American Journal of Engineering Research (AJER)

e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-02, Issue-10, pp-86-91 www.ajer.org

Research Paper

Open Access

Common Fixed Point Theorems for Sequence Of Mappings Under Contractive Conditions In Symmetric Spaces

T.R.Vijayan,

Department of Mathematics, Pavai College of Technology, Namakkal - 637018, India.

Abstract: - The main purpose of this paper is to obtain common fixed point theorems for sequence of mappings under contractive conditions which generalizes theorem of Aamri [1].

Keywords And Phrases: - *Fixed point, Coincidence point, Compatible maps, weakly compatible maps, NonCompatible maps Property (E.A).*

INTRODUCTION

It is well known that the Banach contraction principle is a fundamental result in fixed point theory, which has been used and extended in many different directions. Hicks [2] established some common fixed point theorems in symmetric spaces and proved that very general probabilistic structures admit a compatible symmetric or semi-metric. Recall that a symmetric on a set X is a nonnegative real valued function d on $X \times X$ such that (i) d(x, y) = 0 if, and only if, x = y, and (ii) d(x, y) = d(y, x). Let d be a symmetric on a set X and for r > 0 and any $x \in X$, let $B(x, r) = \{y \in X : d(x, y) < r\}$. A topology t (d) on X is given by $U \in t$ (d) if, and only if, for each $x \in U$, $B(x, r) \subset U$ for some r > 0. A symmetric d is a semi-metric if for each $x \in X$ and each r > 0, B(x, r) is a neighbourhood of x in the topology t(d). Note that $\lim_{n \to \infty} d(x_n, x) = 0$ if and only if $x_n \to x$ in the topology t (d).

II. PRELIMINARIES

Before proving our results, we need the following definitions and known results in this sequel.

I.

Definition 2.1([3]) let (X, d) be a symmetric space. (W.3) Given $\{x_n\}$, x and y in X, $\lim_{n \to \infty} d(x_n, x) = 0$ and $\lim_{n \to \infty} d(x_n, y) = 0$ imply x = y. (W.4) Given $\{x_n\}$, $\{y_n\}$ and x in X $\lim_{n \to \infty} d(x_n, x) = 0$ and

 $\lim_{n \to \infty} d(x_n, y_n) = 0 \text{ imply that } \lim_{n \to \infty} d(y_n, x) = 0.$

Definition 2.2([4]) Two self mappings A and B of a metric space (X, d) are said to be weakly commuting if d $(AB_x,BA_x) \le d (A_x,B_x), \forall x \in X.$

Definition 2.3([5]) Let A and B be two self mappings of a metric space (X, d). A and B are said to be

compatible if $\lim_{n\to\infty} d(ABx_n, BAx_n) = 0$, whenever (x_n) is a sequence in X such that

 $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = t$ for some $t \in X$.

Remark 2.4. Two weakly commuting mappings are compatibles but the converse is not true as is shown in [5]. **Definition 2.5** ([5]) Two self mapping T and S of a metric space X are said to be weakly compatible if they commute at there coincidence points, i.e., if $T_u = S_u$ for some $u \in X$, then $TS_u = ST_u$.

Note 2.6. Two compatible maps are weakly compatible. M. Aamri [6] introduced the concept property (E.A) in the following way.

Definition 2.7 ([6]). Let S and T be two self mappings of a metric space (X, d). We say that T and S satisfy the property (E.A) if there exists a sequence $\{x_n\}$ such that $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$ for some $t \in X$.

Definition 2.8 ([6]). Two self mappings S and T of a metric space (X, d)

will be non-compatible if there exists at least one sequence $\{x_n\}$ in X such that if $\lim_{n\to\infty} d(STx_n, TSx_n)$ is either nonzero or non-existent.

Remark 2.9. Two noncompatible self mappings of a metric space (X, d) satisfy the property (E.A). In the sequel, we need a function φ : IR⁺ \rightarrow IR⁺ satisfying the condition $0 < \varphi$ (t) < t for each t > 0.

www.ajer.org

2013

Definition 2.10. Let A and B be two self mappings of a symmetric space (X, d). A and B are said to be compatible if $\lim_{n\to\infty} d(ABx_n, BAx_n) = 0$ whenever (x_n) is a sequence in X such that $\lim_{n\to\infty} d(Ax_n, t) = \lim_{n\to\infty} d(Bx_n, t) = 0$ for some $t \in X$.

Definition 2.11. Two self mappings A and B of a symmetric space (X, d) are said to be weakly compatible if they commute at their coincidence points.

Definition 2.12. Let A and B be two self mappings of a symmetric space (X, d). We say that A and B satisfy the property (E.A) if there exists a sequence (x_n) such that $\lim_{n\to\infty} d(Ax_n, t) = \lim_{n\to\infty} d(Bx_n, t) = 0$ for some $t \in X$. **Remark 2.13.** It is clear from the above Definition 2.10, that two self mappings S and T of a symmetric space (X, d) will be noncompatible if there exists at least one sequence (x_n) in X such that $\lim_{n\to\infty} d(Sx_n, t) = 0$ for some $t \in X$. Therefore, two noncompatible self mappings of a symmetric space (X, d) satisfy the property (E.A).

Definition 2.14. Let (X, d) be a symmetric space. We say that (X, d) satisfies the property (H_E) if given $\{x_n\}$, $\{y_n\}$ and x in X, and $\lim_{n\to\infty} d(x_n, x) = 0$ and $\lim_{n\to\infty} d(y_n, x) = 0$ imply $\lim_{n\to\infty} d(y_n, x_n) = 0$ Note that (X,d) is not a metric space.

Aamri [1] prove the following theorems.

Theorem 2.15 (Aamri [1]). Let d be a symmetric for X that satisfies (W.3) and (H_E). Let A and B be two weakly compatible self mappings of (X, d) such that (1) $d(A_x, A_y) \le \phi(\max\{d(B_x, B_y), d(B_x, A_y), d(A_y, B_y)\})$ for all $(x, y) \in X^2$, (2) A and B satisfy the property (E.A), and (3) AX \subset BX. If the range of A or B is a complete subspace of X, then A and B have a unique common fixed point.

Theorem 2.16 (Aamri [1]). Let d be a symmetric for X that satisfies (W.3), (W.4) and (H_E). Let A, B, T and S be self mappings of (X, d) such that (1) $d(A_x, B_y) \le \varphi(\max\{d(S_x, T_y), d(S_x, B_y), d(T_y, B_y)\})$ for all $(x, y) \in X^2$,

(2) (A, T) and (B,S) are weakly compatibles, (3) (A, S) or (B, T) satisfies the property (E.A), and

(4) $AX \subset TX$ and $BX \subset SX$. If the range of the one of the mappings A, B, T or S is a complete subspace of X, then A, B, T and S have a unique common fixed point.

III. MAIN RESULTS

In this section we prove common fixed point theorem for sequence of mappings that generalizes Theorem 2.16. **Theorem 3.1.** Let d be a symmetric for X that satisfies (W.3) (W.4) and (H_E). Let $\{A_i\}$, $\{A_j\}$, S and T be self maps of a metric space (X, d) such that

(1) $d(A_ix, A_iy) < \max\{d(S_xT_y), d(A_ix, S_x), d(A_iy, T_y), d(A_ix, T_y), d(A_iy, S_x)\}$ for all $(x, y) \in X^2, (i \neq j), (j \neq$

(2) (A_i, S) or (A_k, T) are weakly compatibles. (3) (A_i, S) or (A_jT) , $(i \neq j)$ satisfies the property (E.A) and

(4) $A_i X \subset TX$ and $A_j X \subset SX$ for $(i \neq j)$

If the range of the one of the mappings $\{A_i\}$, $\{A_j\}$, S or T is a complete subspace of X,

then (I) A_i and S have a common fixed point, $\forall i$ (II) $A_j, (i \neq j)$ and T have a common fixed point provided that (A_k, T) for some k > 1 is weakly compatible. (III) A_i, A_j, S $(i \neq j)$ and T have a unique common fixed point provided that (I) and (II) are true.

Proof. Suppose that (A_j,T) ($i \neq j$) satisfies the property (E.A.).

=>There exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} d(A_j x_n, t) = \lim_{n\to\infty} d(Tx_n, t) = 0$ for $(i\neq j)$ and for some $t \in X$. Since $A_j X \subset SX$ $(i\neq j)$, there exists a sequence $\{y_n\}$ in X such that $A_j x_n = Sy_n$.

Hence,
$$\lim_{n \to \infty} d(Sy_n, t) = 0$$
 (since, $\lim_{n \to \infty} d(A_j x_n, t) = 0$)

Let us prove that $\lim_{n \to \infty} d(A_i y_n, t) = 0$

It is enough to prove that $A_iy_n = A_jx_n$, $(i \neq j)$ and for sufficiently large n. Suppose not, then using (1)

 $\begin{aligned} &d(A_iy_n,A_jx_n) < max\{d(Sy_n,Tx_n), d(A_iy_n,Sy_n), d(A_jx_n,Tx_n), d(A_iy_n,Tx_n), d(A_jx_n,Sy_n)\} \text{ for all } (x,y) \in X^2, (i\neq j) \\ &d(A_iy_n,A_jx_n) < max\{d(A_jx_n,Tx_n), d(A_iy_n,A_jx_n), d(A_jx_n,Tx_n), d(A_iy_n,Tx_n)\} \text{ for all } (x,y) \in X^2, (i\neq j), \\ & \text{ For sufficiently large n,} \\ \end{aligned}$

 $d(A_iy_n, A_jx_n) < \max\{ d(A_iy_n, A_jx_n), d(A_iy_n, A_jx_n) \} < d(A_iy_n, A_jx_n)$ $=> <= A_iy_n \neq A_ix_n \text{ for } (i \neq j)$ $\{ \text{Since, } A_jx_n = Tx_n \text{ as } n \rightarrow \infty \} (By H_E)$

 $\lim_{n \to \infty} d(A_i y_n, A_j x_n) = 0$ By(W.2), we deduce that $\lim_{n \to \infty} d(A_i y_n, t) = 0$.

Suppose SX is a complete subspace of X. Then
$$t = Su$$
 for some $u \in X$.

Therefore, $\lim_{n \to \infty} d(A_i y_n, S_u) = \lim_{n \to \infty} d(A_j x_n, S_u) = \lim_{n \to \infty} d(T x_n, S_u)$

 $=\lim_{n \to \infty} d(Sy_n, S_u)=0 \ (i \neq j)$

Using (1), it follows $d(A_iu, A_jx_n) < max\{d(S_u, Tx_n), d(A_iu, S_u), d(A_jx_n, Tx_n), d(A_iu, Tx_n), d(A_jx_n, S_u)\}$ for sufficiently large n, $(i \neq j)$

 $d(A_iu,S_u) < max\{d(A_iu,S_u), d(A_iu,S_u)\}(i \neq j),$

 $\langle d(A_i u, S_u) \forall i = \rangle \langle u \neq S_u \forall i \rangle$

Therefore, $A_i u = S_u \forall i$

This means that A_i and S have coincidence point. But $(A_i, S) \forall i$ is weakly compatible.

www.ajer.org

 $SA_iu = A_iS_u \ \forall i \text{ and then } A_iA_iu = A_iS_u = SA_iu = SS_u. \ \forall i$ Suppose $A_i X \subset TX \forall i$ =>There exists $v \in X$ such that $A_i u = T_v \forall i$ $=>A_iu=S_u=T_v \forall i$ To prove that $T_v = A_i v$, $(i \neq j)$ Suppose $T_v \neq A_i v$, then $(1) => d(A_{i}u, A_{j}v) < max\{d(S_{u}, T_{v}), d(A_{i}u, S_{u}), d(A_{j}v, T_{v}), d(A_{i}u, T_{v}), d(A_{j}v, S_{u})\}$ $= \max\{d(T_v, T_v), d(S_u, S_u), d(A_iv, T_v), d(T_v, T_v), d(A_iv, T_v)\} (i \neq j)$ $= \max\{d(A_iv,T_v), d(A_iv,T_v)\} \ (i \neq j)$ $= d(A_iv,T_v) = d(A_iv,A_iu), (i \neq j)$ Therefore $(A_iu, A_jv) < d(A_jv, A_iu)$ $(i \neq j)$ =><= Therefore A_iu=A_iv (i \neq j) $=>A_iv=A_iu=T_v$ Therefore, $A_iv=T_v$ for $i\neq j$ $=>A_iu=S_u=T_v=A_iv, i\neq j$ But (A_k, T) is weakly compatible for some k>1 $A_kT_v=TA_kv$ for some k>1 and $TT_v=TA_kv=A_kT_v=A_kA_kv$, for some k>1 We shall prove that $A_i u$ is a common fixed point of A_i and S $\forall \ i$ Suppose A_iu≠A_iA_iu ∀ i $d(A_iu, A_iA_iu) = d(A_iv, A_iA_iu)$ (since, $A_iv = A_iu$) ($i \neq j$) $d(A_iA_iu, A_iv) < max\{d(SA_iu, T_v), d(A_iA_iu, SA_iu), d(A_iv, T_v), d(A_iA_iu, T_v), d(A_iv, SA_iu)\} (i \neq j)$ $= \max \{ d(A_iA_iu, A_jv), 0, 0, d(A_iA_iu, A_jv), d(A_jv, A_iA_iu) \} (i \neq j)$ $= d (A_i A_i u, A_j v)$ Therefore, $d(A_j v, A_i A_i u) < d(A_i A_i u A_j v)$ =><= Therefore, $A_iA_iu = A_iv$ ($i \neq j$) $=> A_i A_i u = A_i u = S A_i u$ (since, $A_i A_i u = S A_i u$) => $A_i u$ is a common fixed point of A_i and S. \forall i This proves (I). To prove that $A_k v = A_i u$ for some k>1 is a common fixed point of $A_i (i \neq j)$ and T Suppose $A_k v \neq A_i A_k v$, then $d(A_kv,A_iA_kv) = d(A_iu,A_iA_kv)$ $< \max\{d(S_u, TA_kv), d(A_iu, S_u), d(A_jA_kv, TA_kv), d(A_iu, TA_kv), d(A_jA_kv, S_u)\}$ $= \max\{d(A_iu, A_jA_kv), 0, d(A_jA_kv, A_jA_kv), d(A_iu, A_jA_kv), d(A_jA_kv A_iu)\} \text{ (since, } A_jv=T_v)$ $= \max\{d(A_{i}u, A_{j}A_{k}v), 0, 0, d(A_{i}u, A_{j}A_{k}v), d(A_{j}A_{k}v, A_{i}u)\}$ Therefore, $d(A_kv, A_jA_kv) < d(A_iu, A_jA_kv)$. =><= (since,A_iu=A_kv) Therefore, $A_i u = A_j A_k v$ ie., $A_k v = A_j A_k v = T A_k v$ (since, $A_j v = T_v$) $=>A_k v$ is the common fixed point of A_j and T. This proves (II) Now, A_iu is a common fixed point of A_i and S. \forall i A_kv=A_iu is the common fixed point of A_iand T for i≠j Therefore, A_iu is the common fixed point of A_i, Tand S for all j (i≠j) The proof is similar when TX is assumed to be complete subspace of X. The cases in which $A_i X$ or $A_i X$ (i $\neq j$) is a complete subspace of X are similar to the cases in which SX or TX respectively is a complete space because $A_i X \subset TX$ and $A_i X \subset SX$ ($i \neq j$). **Uniqueness.** Suppose u, v are two fixed points of A_i , A_i ($i \neq j$), TandS. Then $A_i u = S_u = A_j u = T_u = u$, $(i \neq j)$ and $A_i v = A_j v = T_v = S_v = v$, $(i \neq j)$. Then $d(u,v) = d(A_iu,A_iv) (i \neq j)$ $< max\{d(S_u, T_v), d(A_iu, S_u), d(A_jv, T_v), d(A_iu, T_v), d(A_jv, S_u)\}$ $= \max\{d(u,v), 0, 0, d(u,v), d(u,v)\}$ =d(u,v).Therefore, d (u,v)=d(u,v) ==><== when $u \neq v$. Therefore, u=v. ie., A_i, A_i, T and S have unique common fixed point for all i and j. The following result due to Aamri [1] is a special case of the previous theorem 3.1. Corollary 3.1.Let d be a symmetric for X that satisfies (W.3) (W.4) and (H_E).Let A_1 , A_2 , S and T be self mappings of a metric space (X,d) such that (i) $d(A_1x, A_2y) < max\{d(S_x, T_y), d(A_1x, S_x), d(A_1x, T_y), d(A_2, T_y), d(A_2y, S_x)\}$ for all (x,y) εX^2 , (ii) (A_1, S) and (A_2, T) are weakly compatibles. $(iii)(A_1, S)$ or (A_2, T) satisfies the property (E.A.) and

www.ajer.org

Page 88

(iv) $A_1X \subset TX$ and $A_2X \subset SX$. If the range of one of the mappings A_1 , A_2 , S or T is a complete subspace of X, then A_1 , A_2 , S and T have a unique common fixed point.

Proof. The proof of Corollary 3.1 follows from Theorem 3.1 by putting i = 1 and j=2.

Corollary 3.2. Let d be a symmetric for X that satisfies (W. 3), (W.4) of Wilson and (H_E) .

Let A, B and T be self mappings of a metric space (X,d) such that

(i)AX, BX \subset TX.

(ii) (A, T) is weakly compatible,

(iii) (A,T) or (B,T) satisfies the property (E.A.),

(iv) $d(A_x, B_y) < max \{ d(T_x, T_y), d(A_x, T_x), d(B_y, T_y), d(A_x, T_y), d(B_y, T_x) \}$

If the range of one of the mappings A, B or T is a complete subspace of X, then

(I) A and T have a common fixed point,

(II) B and T have a common fixed point provided that (B, T) is weakly compatible.

(III) A, B, S and T have a unique common fixed point provided that (I) and (II) are true.

Corollary 3.3. Let d be a symmetric for X that satisfies (W.3),(W.4)and(H_E).Let G, T be self mappings of a metric space (X,d) such that (i) $d(T_x,T_y) \le \phi (\max\{d(G_x,G_y), d(G_x,G_y), d(G_x,G_y)$

 $d(G_x, T_y), d(G_y, T_y), 1/2[d(G_x, T_y) + d(G_y, T_y)]$ for all (x,y) εX^2 ,

(ii)G and T are weakly compatibles, (iii)T and G satisfy the property (E.A), and

(iv)TX \subset GX .If the range of one of the mappings G or T is a complete subspace of X,

then G and T have a unique common fixed point.

Corollary 3.4. Let d be a symmetric for X that satisfies (W.1) of Wilson and (H_E) .

Let S and T be two weakly compatible self mappings of a metric space (X,d) such that

(i) $d(T_x, T_y) \le \phi$ (max{ $d(S_x, S_y), d(S_x, T_y), d(S_y, T_y), 1/2[d(S_x, T_y) + d(S_y, T_y)]$ } for all (x,y) εX^2 ,

(ii) Sand T satisfy the property (E.A.) and

(iii) SX \subset TX. If the range of S or T is a complete subspace of X, then S and T have a unique common fixed point.

Theorem 3.2. Let d be a symmetric for X that satisfies (W.3),(W.4) and (H_E). Let A, B, T and S be self mappings of a metric space (X,d) such that (i) $d(A_x,B_y) < \alpha d(B_y,T_y) \{ [1 + d(A_x,S_x)]/1 + d(S_x,T_y) \} + \beta[d(B_y,T_y)+d(A_x,S_x)] + \gamma[d(B_y,S_x)+d(A_x,T_y)] + \delta d(S_x,T_y)$ for all (x,y) $x \in X^2$ with α , β , γ , $\delta \geq 0$ and $\alpha + \beta + 2\gamma + \delta < 1$ (ii) (A,S) and (B,T) are weakly compatibles. (iii) (A, S) or (B, T) satisfies the property (E.A.) (iv) AX \subset TX and BX \subset SX. If the range of one of the mappings A, B, S or T is a complete subspace of X, then A, B, S and T have a unique common fixed point.

Proof. Suppose (B, T) satisfies the property (E.A). Then there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} d(Bx_n, t) = \lim_{n\to\infty} d(Tx_n, t) = 0$ for some $t \in X$. Since BX \subset SX, there exists in X a sequence (y_n) in X such that $Bx_n = Sy_n$. Hence $\lim_{n\to\infty} d(Sy_n, t) = 0$.

Let us show that $\lim_{n \to \infty} d(Ay_n, t) = 0$

It is enough to prove that $Ay_n = Bx_n$. Suppose not, by (1), we get

- $d(Ay_n, Bx_n) < \alpha d(Bx_n, Tx_n) \{ [1 + d(Ay_n, Sy_n)]/1 + d(Sy_n, Tx_n) \} + \beta [d(Bx_n, Tx_n) + \beta [d(Bx_n, Tx_n) + \beta (d(Bx_n, Tx_n) + \beta (d(Bx_n,$
- $d(Ay_n,Sy_n)]+\gamma[d(Bx_n,Sy_n)+d(Ay_n,Tx_n)]+\delta d(Sy_n,Tx_n),$

 $< \alpha d(Bx_n, Tx_n) \{ [1 + d(Ay_n, Bx_n)]/1 + d(Bx_n, Tx_n) \} + \beta [d(Bx_n, Tx_n) + d(Ay_n, Bx_n)] + \gamma [d(Bx_n, Sy_n) + d(Ay_n, Tx_n)] + \delta d(Bx_n, Tx_n) \}$

For sufficiently large n,

 $d(Ay_n, Bx_n) < 0 + \beta[0 + d(Ay_n, Bx_n)] + \gamma[0 + d(Ay_n, Tx_n) < \beta d(Ay_n, Bx_n) + \gamma d(Ay_n, Tx_n)$

 $= (\beta + \gamma) d(Ay_n, Bx_n) \text{ (since, } \lim_{n \to \infty} d(Bx_n, t) = \lim_{n \to \infty} d(Tx_n, t) = 0)$

This is a contradiction, $\lim_{n \to \infty} d(Ay_n, Bx_n) = 0$

By (W.3), we deduce that $\lim_{n \to \infty} d(Ay_n, t) = 0$

Suppose that SX is a complete subspace of X. Then t = Su for some $u \in X$

Subsequently, we have $\lim_{n \to \infty} d(Ay_n, S_u) = \lim_{n \to \infty} d(Bx_n, S_u) = \lim_{n \to \infty} d(Tx_n, S_u) = \lim_{n \to \infty} d(Sy_n, S_u) = 0$ Using (1),

 $d(A_u, Bx_n) < \alpha d(Bx_n, Tx_n) \{ [1 + d(A_u, S_u)]/1 + d(S_u, Tx_n) \} + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u)] + \gamma [d(Bx_n, S_u) + d(Bx_n, S_u)]/1 + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u))] + \gamma [d(Bx_n, S_u) + d(Bx_n, Tx_n)] \} + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u))] + \gamma [d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u))] + \gamma [d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u))] + \gamma [d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u))] + \gamma [d(Bx_n, Tx_n) + (d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u))] + \gamma [d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + (d(A_u, S_u))] + \gamma [d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + (d(Bx_n, Tx_n))] + \beta [d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + \beta [d(Bx_n, Tx_n) + d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + \beta [d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + \beta [d(Bx_n, Tx_n)] + \beta [d(Bx_n, Tx_n) + \beta [d(Bx_n, Tx_n)] + \beta [d(Bx_n$

 $d(A_u,Tx_n)]+\delta d(S_u,Tx_n)$

Letting $n \rightarrow \infty$, we have $\lim_{n \rightarrow \infty} d(A_u, Bx_n) < \beta d(A_u, S_u) + \gamma d(A_u, S_u)$

 $d(A_u, S_u) < (\beta + \gamma) d(A_u, S_u).$

This is a contradiction for $A_u \neq S_u$.

The weakly compatibility of A and S implies that

 $AS_u = SA_u$ and then $AA_u = AS_u = SA_u = SS_u$.

Since AX \subset TX, there exists v \in X such that $A_u = T_v$. Therefore $A_u = S_u = T_v$.

We claim that $T_v = B_v$. If not condition (1) gives

www.ajer.org

 $d(A_u, B_v) < \alpha \ d(B_v, T_v) \left\{ \left[1 + d(A_u, S_u) \right] / 1 + d(S_u, T_v) \right\} + \beta [d(B_v, T_v) + d(A_u, S_u)] + \gamma [d(B_v, S_u) + d(A_u, T_v)] + \beta [d(B_v, T_v) + d(A_u, S_u)] + \gamma [d(B_v, S_u) + d(A_u, T_v)] + \beta [d(B_v, T_v) + d(A_u, S_u)] + \gamma [d(B_v, S_u) + d(A_u, T_v)] + \beta [d(B_v, T_v) + d(A_u, S_u)] + \gamma [d(B_v, T_v) + d(A_u, T_v)] + \beta [d(B_v, T_v) + d(A_u, S_u)] + \gamma [d(B_v, T_v) + d(A_u, T_v)] + \beta [d(B_v, T_v) + d(A_u, S_u)] + \gamma [d(B_v, T_v) + d(A_u, T_v)] + \beta [d(B_v, T_v) + d(A_u, S_u)] + \gamma [d(B_v, T_v) + d(A_u, T_v)] + \beta [d(B_v, T_v) + \beta$ $\delta d(S_{u},T_{v}) < \alpha d(B_{v},A_{u}) \{ [1 + 0]/(1 + 0) \} + \beta [d(B_{v},T_{v})+0] + \gamma [d(B_{v},A_{u})+0] + \delta (0) \}$ $d(A_u, B_v) < \alpha d(B_v, A_u) + \beta d(B_v, A_u) + \gamma d(B_v, A_u).$ $d(A_u, B_v) < (\alpha + \beta + \gamma) d(B_v, A_u).$ This is a contradiction for $A_u \neq B_v$. Therefore $A_u = B_v$ and then $B_v = A_u = T_v$. This implies that $A_u = S_u = T_v = B_v$. But (B, T) is weakly compatible implies $BT_v = TB_v$ and $TT_v = TB_v = BT_v = BB_v$. We shall prove that A_{μ} is a common fixed point of A and S. Suppose that $AA_u \neq A_u$. $d(A_u, AA_u) = d(AA_u, B_v)$ $< \alpha d(B_{v}, T_{v}) \{ [1 + d(AA_{u}, SA_{u})]/1 + d(SA_{u}, T_{v}) \} + \beta [d(B_{v}, T_{v}) + d(AA_{u}, SA_{u})] + \gamma [d(B_{v}, SA_{u}) + d(AA_{u}, T_{v})] + \beta [d(B_{v}, T_{v}) + d(AA_{u}, SA_{u})] + \gamma [d(B_{v}, SA_{u}) + d(AA_{u}, T_{v})] + \beta [d(B_{v}, T_{v}) + d(AA_{u}, SA_{u})] + \gamma [d(B_{v}, SA_{u}) + d(AA_{u}, T_{v})] + \beta [d(B_{v}, T_{v}) + d(AA_{u}, SA_{u})] + \gamma [d(B_{v}, SA_{u}) + d(AA_{u}, T_{v})] + \beta [d(B_{v}, T_{v}) + d(AA_{u}, SA_{u})] + \beta [d(B_{v}, T_{v}) + d(AA_{u}, SA_{u})] + \beta [d(B_{v}, SA_{u}) + d(AA_{u}, T_{v})] + \beta [d(B_{v}, SA_{u}) + d(AA_{u}, T_{v})] + \beta [d(B_{v}, SA_{u}) + d(AA_{u}, SA_{u})] + \beta [d(B_$ $\delta d(SA_u, T_v)$ $=\gamma[d(B_v,AA_u)+d(AA_u,B_v)]+\delta d(AA_u,B_v)$ $= (2 \gamma + \delta)d(AA_u, B_v)$ This is a contradiction for $AA_{\mu} \neq B_{\nu}$. Therefore $AA_u = B_v$ and then $AA_u = A_u = SA_u$ (since $AA_u = SA_u$) Therefore A_u is a common fixed point of A and S. To prove that $B_v = A_u$ is a common fixed point of B and T. Suppose $B_v \neq BB_v$. $d(B_v, BB_v) = d(A_u, BB_v)$ $< \alpha d(BB_v, TB_v) \{ [1 + d(A_u, S_u)]/1 + d(S_u, TB_v) \} + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, S_u) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, S_u) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, S_u) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, S_u) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, TB_v) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, TB_v) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, TB_v) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, TB_v) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \gamma [d(BB_v, TB_v) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \beta [d(BB_v, TB_v) + d(A_u, TB_v)] + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \beta [d(BB_v, TB_v) + \beta [d(BB_v, TB_v) + d(A_u, S_u)] + \beta [d(BB_v, TB_v) + \beta$ $\delta d(S_u, TB_v)$ $= \gamma [d(BB_v, A_u) + d(A_u, BB_v)] + \delta d(A_u, BB_v)$ $= (2 \forall + \delta)d(A_u, BB_v) = (2 \forall + \delta)d(B_v, BB_v)$ which is a contradiction for $B_v \neq BB_v$. Therefore $B_v = A_u = BB_v = TB_v$. This means that B_v is a common fixed point of B and T. Therefore, A_u is the common fixed point of A and S. $B_v = A_u$ is the common fixed point of B and T. Therefore, A_{μ} is the common fixed point of A, B, T and S. The proof is similar when TX is assumed to be a complete subspace of X. The cases in which AX or BX is a complete subspace of X are similar to the cases in which SX or TX respectively is a complete space because $AX \subset TX$ and BX⊂SX. Uniqueness. Suppose u, v are two fixed points of A, B, T and S. Then $A_u = S_u = B_u = T_u = u$. and $A_v = B_v = T_v = S_v = v$. Then for $u \neq v$, and then (1) gives $d(u,v) = d(A_u, B_v)$ $< \alpha \ d(B_v, T_v) \ \{ \ [\ 1 \ + \ d(A_u, S_u)] / 1 \ + \ d(S_u \ , T_v) \} + \beta [d(B_v, T_v) + (\ d(A_u, S_u)] + \gamma [d(B_v, S_u) + \ d(A_u, T_v)] + \delta \ d(S_u, T_v) \ = 0 \ d(S_u, T_v) \ d(S_u, T_$ $\gamma[d(B_v, A_u) + d(A_u, B_v)] + \delta d(A_u, B_v)$ $=(2 \forall + \delta)d(A_u, B_v) = (2 \forall + \delta)d(u, v).$ This is a contradiction for $u \neq v$. Therefore u = v. This means that A, B, T and S have unique common fixed point. For three maps, we have the following result by altering the condition (i) in theorem 3.2. Corollary 3.3. Let d be a symmetric for X that satisfies (W.3), (W.4) of Wilson and (H_E). Let A, B and S be self mappings of a metric space (X,d) such that (i) AX, BX⊂SX, (ii) (A, S) is weakly compatible., (iii)(A, S) or (B, S) satisfies the property (E.A.), $(iv) \ d(A_x, B_y) < \alpha \ d(B_y, S_y) \{ [1 + d(A_x, S_x)]/1 + d(S_x, S_y) \} + \beta [d(B_y, S_y) + d(A_x, S_x)] + \gamma [d(B_y, S_x) + d(A_x, S_y)] + \delta [d(B_y, S_y) + d(A_y, S_y)] \} = 0$ $d(S_x, S_y)$ for all $(x, y) x \in X^2$ with $\alpha, \beta, \gamma, \delta \ge 0$ and $\alpha + \beta + \gamma + \delta < 1$. If the range of one of the mappings A, B or S is a complete subspace of X, then A, B and S have a unique common fixed point. For two maps, we have the following result by altering the condition (i) in theorem of Aamri [1]. Theorem 3.3. Let d be a symmetric for X that satisfies (W.3) of Wilson and (H_E) . Let S and T be weakly compatible self mappings of a metric space (X,d) such that (i) $d(T_x, T_y) < \alpha \{ d(T_x, S_x)/1 + d(S_x, T_y) \} + \beta d(T_x, S_x) + \gamma [d(T_y, S_x) + d(T_x, T_y)] + \delta d(S_x, T_y) \text{ for all } (x, y) \ x \in X^2 \text{ with } X = X^2 + \beta d(T_y, S_x) + \beta d(T_y, S_x) + \beta d(S_y, T_y) \}$

(1) d(1_x,1_y) < α { $a(1_x, 5_x)/1 + a(5_x, 1_y)$ } + β d(1_x, $5_x)+\gamma$ [d(1_y, $5_x)+d(1_x, 1_y)$]+ σ d($S_x, 1_y$) for all (x,y) x \in X⁻ with α , β , γ , $\delta \ge 0$ and $\alpha + \beta + 2\gamma + \delta < 1$. (ii)T and S satisfy the property (E.A.), (iii) TX \subset SX, If SX or TX is a complete subspace of X, then T and S have a unique common fixed-point.

Proof. Since T and S satisfy the property (E.A). Then there exists a sequence (x_n) in X such that $\lim_{n \to \infty} d(Sx_n, t) = \lim_{n \to \infty} d(Tx_n, t) = 0 \text{ for some } t \in X.$ Therefore, by (H_E), we have $\lim_{n \to \infty} d(Tx_n, Sx_n) = 0$ Suppose that SX is a complete subspace of X. Then $t=S_u$ for some $u \in X$. We claim that $T_n = S_n$ By (1) we have $d(Tx_n, T_u) < \alpha \{ d(Tx_n, Sx_n)/1 + d(Sx_n, T_u) \} + \beta (d(Tx_n, Sx_n)] + \gamma [d(T_u, Sx_n) + d(Tx_n, T_u)] + \beta (d(Tx_n, Sx_n)) + \beta$ $\delta d(Sx_n, T_u)$. Letting n-> ∞ , we have $\lim_{n\to\infty} d(Tx_n, T_u) < \lim_{n\to\infty} \{\gamma [d(T_u, Sx_n) + d(Tx_n, T_u)] + \delta d(Sx_n, T_u)\}$ $d(S_u,T_u) < 2 \gamma d(S_u,T_u) + \delta d(S_u,T_u) = (2\gamma + \delta) d(S_u,T_u)$ This is a contradiction $S_u \neq T_u$. Therefore, $S_u = T_u$. Since S and T are weakly compatible, $ST_u = TS_u$ and therefore $TT_u = TS_u = ST_u = SS_u$. Let us prove that T_u is a common fixed point of T and S. Suppose $T_u \neq TT_u$, Then $d(T_u,TT_u) < \alpha \{ d(T_u,S_u)/1 + d(S_u,TT_u) \} + \beta (d(T_u,S_u)) + \gamma [d(TT_u,S_u) + d(T_u,TT_u)] + \delta d(S_u,TT_u) \}$ $<(2\gamma + \delta)d(T_u, TT_u)$ This is a contradiction for $T_u \neq TT_u$. Therefore, $T_u=TT_u$ and $ST_u=TT_u=T_u$. The proof is similar when TX is assumed to be a complete subspace of X since $TX \subset SX$. **Uniqueness.** Suppose T_u , T_v are two fixed points of T and S with $T_u \neq T_v$. Then $d(T_{u},T_{v}) < \alpha \{ d(T_{u},S_{u})/1 + d(S_{u},T_{v}) \} + \beta (d(T_{u},S_{u})) + \gamma [d(T_{v},S_{u}) + d(T_{u},T_{v})] + \delta d(T_{u},T_{v}) \}$ Therefore $d(T_u, T_v) < (2\gamma + \delta) d(T_u, T_v)$. This is a contradiction for $T_u \neq T_v$

Therefore, $T_u=T_v$ and hence, T and S have unique common fixed point.

REFERENCES

- M. Aamri and D. El. Moutawakil, common fixed point theorems under contractive conditions in symmetric spaces Appl.Math, 3 (2003) 156-162.
- [2] T. L. Hicks, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Analysis, 36(1999), 331—344.
- [3] W. A. Wilson, on semi-metric spaces, Amer. J. Math., 53(1931), 361–373.
- [4] S. Sessa, on a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd), 32(46) (1982), 149–153.
- [5] G. Jungck, Compatible mappings and common fixed points, Intl. J. Math. Sci., 9 (1986), 771-779.
- [6] M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Theory and App., 270 (2002) 181-188.

2013