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l. INTRODUCTION

It is well known that the Banach contraction principle is a fundamental result in fixed point theory,
which has been used and extended in many different directions. Hicks [2] established some common fixed point
theorems in symmetric spaces and proved that very general probabilistic structures admit a compatible
symmetric or semi-metric. Recall that a symmetric on a set X is a nonnegative real valued function d on X x X
such that (i) d(x, y) = 0 if, and only if, x =y, and (ii) d(x, y) = d(y, X). Let d be a symmetric on a set X and
forr>0andany x € X, let B(x, r) ={y € X: d(X, y) < r}. A topology t (d) on X is given by U € t (d) if, and only
if, for each x € U, B(x, r) < U for some r > 0. A symmetric d is a semi-metric if for each x € X and each r > 0,
B(x, r) is a neighbourhood of x in the topology t(d). Note that lim,, 5.. d(x,,x) = 0 if and only if x,— x in the

topology t (d).

1. PRELIMINARIES
Before proving our results, we need the following definitions and known results in this sequel.

Definition 2.1([3]) let (X, d) be a symmetric space. (W.3) Given {X,}, x and y in X, lim, 5. d(x,,x) = 0 and
lim, 5. d(x,,y) =0imply x =y. (W.4) Given {X,}, {yn} and x in X lim,, 5., d(x,,x) =0 and

lim,, 5. d(x,,y,) = 0 imply that lim,, 5. d(y,,,x) = 0.

Definition 2.2([4]) Two self mappings A and B of a metric space (X, d) are said to be weakly commuting if d
(ABy,BA,) = d (Ay,B,), Yx € X.

Definition 2.3([5]) Let A and B be two self mappings of a metric space (X, d). A and B are said to be
compatible if lim, 5., d(ABx,, BAx, )= 0, whenever (X,) is a sequence in X such that

lim,, 5., Ax, =lim, s.. Bx,=t for some t € X.

Remark 2.4. Two weakly commuting mappings are compatibles but the converse is not true as is shown in [5].
Definition 2.5 ([5]) Two self mapping T and S of a metric space X are said to be weakly compatible if they
commute at there coincidence points, i.e., if T, = S, for some u € X, then TS, = ST,.

Note 2.6. Two compatible maps are weakly compatible. M. Aamri [6] introduced the concept property (E.A) in
the following way.

Definition 2.7 ([6]). Let S and T be two self mappings of a metric space (X, d). We say that T and S satisfy the
property (E.A) if there exists a sequence {x,} such that lim, 5., Tx,=lim,, .. Sx,=t for some t € X.

Definition 2.8 ([6]). Two self mappings S and T of a metric space (X, d)

will be non-compatible if there exists at least one sequence {x,} in X such that if lim, 5. d(STx,,TSx,) is
either nonzero or non-existent.

Remark 2.9. Two noncompatible self mappings of a metric space (X, d) satisfy the property (E.A).

In the sequel, we need a function @: IR* = IR" satisfying the condition 0 < ¢ (t) < t for each t > 0.
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Definition 2.10. Let A and B be two self mappings of a symmetric space (X, d).A and B are said to be
compatible iflim, 5. d(ABx,,BAx,) = 0 whenever (X,) is a sequence in X such thatlim, 5. d(4x,,t)
=lim, 5. d(Bx,,t) = 0 for somet € X.

Definition 2.11. Two self mappings A and B of a symmetric space (X, d) are said to be weakly compatible if
they commute at their coincidence points.

Definition 2.12. Let A and B be two self mappings of a symmetric space (X, d). We say that A and B satisfy the
property (E.A) if there exists a sequence (X,) such that lim,, 5., d (Ax,,, t) =lim, 5. d(Bx,,t) =0 for some t € X.
Remark 2.13. It is clear from the above Definition 2.10, that two self mappings S and T of a symmetric space
(X, d) will be noncompatible if there exists at least one sequence (X,) in X such that lim,s. d(Sx,,t)
=lim, 5. d(Tx,,t) = 0 for some t € X. but lim, . d(STx,,TSx,) is either non-zero or does not exist.
Therefore, two noncompatible self mappings of a symmetric space (X, d) satisfy the property (E.A).

Definition 2.14. Let (X, d) be a symmetric space. We say that (X, d) satisfies the property (Hg) if given {x,},
{yn} and x in X, and lim,, .. d(x,,x) = 0 and lim, 5. d(y,,x) =0 imply lim, 5. d(y,,x,) =0

Note that (X,d) is not a metric space.

Aamri [1] prove the following theorems.

Theorem 2.15 (Aamri [1]). Let d be a symmetric for X that satisfies (W.3) and (Hg). Let A and B be two
weakly compatible self mappings of (X, d) such that (1) d(AAy) < @(max{d(By,By), d(BxAy), d(A,,B,)}) for all
(x, y) € X% (2) A and B satisfy the property (E.A), and (3) AX c BX. If the range of A or B is a complete
subspace of X, then A and B have a unique common fixed point.

Theorem 2.16 (Aamri [1]). Let d be a symmetric for X that satisfies (W.3), (W.4) and (Hg). Let A, B, Tand S
be self mappings of (X, d) such that (1) d(A,,B,) < @(max{d(S, T,), d(Sx.B,), d(T,,B,)}) for all (x, y) € X?,

(2) (A, T) and (B,S) are weakly compatibles, (3) (A, S) or (B, T) satisfies the property (E.A), and

(4) AX € TX and BX c SX. If the range of the one of the mappings A, B, T or S is a complete subspace of X,
then A, B, T and S have a unique common fixed point.

1. MAIN RESULTS
In this section we prove common fixed point theorem for sequence of mappings that generalizes Theorem 2.16.
Theorem 3.1. Let d be a symmetric for X that satisfies (W.3) (W.4) and (Hg). Let {Ai}, {Aj}, Sand T be self
maps of a metric space (X, d) such that
(1) d(AX,AY) < max{d(S,T,), d(AX.S,), d(AY.Ty), d(AX.T,), d(Ay, S)} for all (xy) € X*(i#),
(2) (A,S) or (A, T) are weakly compatibles. (3) (A;, S) or (AT) ,(i#)) satisfies the property(E.A) and
(4) AiXc TX and AjX c SX for (i#)
If the range of the one of the mappings {Ai}, {A}, S or T is a complete subspace of X,
then (1) A; and S have a common fixed point, Vi (1) A;,(i#) and T have a common fixed point provided that
(A, T) for some k > 1 is weakly compatible. (I1I) AjA; S (i#) and T have a unique common fixed point
provided that (1) and (1) are true.
Proof. Suppose that (A;,T) (i#j) satisfies the property (E.A.).
=>There exists a sequence {x,} in X such that lim, . d(A,xn,t) = lim, . d(Tx,,t) =0 for (i#) and for
some te X. Since AjX c SX (i#j), there exists a sequence {y,} in X such that AjX, = Syh.
Hence, lim, 5. d(Sy,,t) = 0 (since,lim,, . d(A]-xn,t) =0)
Let us prove that lim, 5., d(4;y,,t) =0
It is enough to prove that Aiy, = Ajx,, (i) and for sufficiently large n.
Suppose not, then using (1)
d(AiYn:Aan) < max{d(SYn,TXn): d(Aiyn ,Syn), d(AanvTXn): d(Aiyn ,TXn), d(Aan rSyn)} for all (va) € Xza (#j)
d(AiYn:Aan) < max{d(Aan:TXn): d(AiynvAan)v d(Aan ,TXn), d(Aiyn :Txn)} for all (va) € Xza(#j)a
For sufficiently large n, { since, Ajx,=Syn}
d(AiYn:Aan) < max{ d(AiYn:Aan): d(Aiyn ,ijn)}< d(Aiyn ,Aan) {Since, AXn= Tx, as n>«}(By He)
=><= Aiyn?é Aan for (l#j)
lim,, 5..d (Aiyn,AX,)=0 By(W.2),we deduce that lim, 5..d( A;y, ,t)=0.
Suppose SX is a complete subspace of X.Then t = Su for some ue X.
Therefore, lim,, 5.d(Aiys ,Sy)= lim,, 5. d(AX, ,S))= lim,,5.0d(Txn,S,)
= limnéwd(s)’nnsu)zo (#j)
Using (1),it follows d(Aiu,Ajxn) < max{d(S,,Tx,), d(Aiu,S,), d(AjXn, TXn), d(Aiu, TX,), d(AX,,Sy)} for
sufficiently large n, (i#))
d(Au,Sy) < max{d(Au,Sy), d(Aiu,S,)}Hi#),
<d(Au,S,) Vi =><=when Au#S, Vi
Therefore, Au=S, V i
This means that A; and S have coincidence point. But (A;, S) V i is weakly compatible.
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SAU = AiS, Y i and then AiAU = AS, = SAu = SS,. Vi
Suppose AX c TX Vi
=>There exists ve X such that Aju=T, Vi
=> Au=S,=T, Vi
To prove that T,= Ay, (i#)
Suppose T, # Ajv,then
(1)=> d(AUAY) < max{d(S, T.), d(Au, Sy), d(AV,T,), d(AUT,), d(AV.S,)}
= max{d(TV ,Tv)x d(SUl SU)1 d(AleTV)l d(TVITV)l d(AJV'TV)} (I;éj)
= max{d(Ayv,T,), d(Av, T)} (i#)
= d(Av,T)) = d(Av,AL), (i#)
Therefore (Aiu,Ajv)<d(Ajv,Aiu) (i#))
=><= Therefore Au=Ay (i#)
=>Av=Au=T, Therefore, Ajv=T, for i#
:>AiU:Su:TV:AjV, |¢J
But (A, T) is weakly compatible for some k>1
AT ~=TA for some k>1 and TT,=TAV=AT,=AAv, for some k>1
We shall prove that Aju is a common fixed point of A;and SV i
Suppose AlUuZAAU Y i
d(Aiu,AiAU) =d(Av,AiAL) (since, Ajv=Au) (i#)
d(AiAiU,AjV) < maX{d(SAiU,TV), d(AiAiU, SAiU), d(AjV,TV), d(AiAiU,TV), d(AjV,SAiU)} (l?éj)
= Mmax {d(AiAiU,AjV), 0,0, d(AiAiU,AjV), d(AjV,AiAiU)} (I?éj)
=d (AjAU,Ay) Therefore, d(Ajv,AiAu)< d(AAU Av)
=>><=
Therefore, AiAiu =Av (i7))
=> AjAiu =Au=SAU (since, AjAiu =SAU)
=> Au is a common fixed point of A;and S. Vi This proves (1).
To prove that Av = Aju for some k>1 is a common fixed point of A;(i#j) and T
Suppose Av£AjALY, then
d(AkV,AjAkV)z d(AiU,AjAkV)
< max{d(S,, TAw), d(Aiu,Sy), d(AAY , TAYV), d(Au, TAWV), d(AJAV,S)}
= max{d(Aiu,AjAV),0, d(AAV,AAY), d(Au, AAY), d(AJAV Au)} (since, Av=T,)
= max{d(Aiu,A,-Akv),0,0, d(AiU, AjAkV), d(AjAkV ,AiU)}
Therefore, d(Av,AjAV)< d(Aiu,AAY).
=><= (since,Aju=Awv)
Therefore, Au=AAV ie., AW=AAV=TAV (since,Av=T,)
=>Ayv is the common fixed point of A; and T. This proves (I1)
Now,Au is a common fixed point of A;and S. Vi
A=A is the common fixed point of Ajand T for i#j
Therefore, Au is the common fixed point of A, Tand S for all j (i#])
The proof is similar when TX is assumed to be complete subspace of X.
The cases in which AiX or A;X (i #) is a complete subspace of X are similar to
the cases in which SX or TX respectively is a complete space because A;X cTX and AjXc SX (i#j).
Uniqueness. Suppose u, v are two fixed points of A;, A; (i#), TandS.
Then Au=S,=Au=T,=u, (i#) and Av=Ayv=T,=S,=v, (i#).Then
d(u,v) = d(Au,Av) (i#)
< maX{d(Su,Tv),d(AiU,Su), d(AjV'TV)l d(AiuvTV)v d(AjV' Su)}
= max{d(u,v),0,0,d(u,v), d(u,v)}
=d(u,v).
Therefore, d (u,v)=d(u,v)
==><== when u#v.
Therefore, u=v.
ie., A, A;, T and S have unique common fixed point for all i and j.
The following result due to Aamri [1] is a special case of the previous theorem 3.1.
Corollary 3.1.Let d be a symmetric for X that satisfies (W.3) (W.4) and (Hg).Let A;, Az, S and T be self
mappings of a metric space (X,d) such that
(i) d(Asx,Azy) < max{d(Sx,Ty), d(Asx, Sy),d(Ax,T,),d(A2,Ty), d(Azy,S,)} for all (x,y) € X°,
(i) (Ay, S) and (A, T) are weakly compatibles.
(iii)(Ay, S) or (A, T) satisfies the property (E.A.) and
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(iv) AiX cTX and A, Xc SX. If the range of one of the mappings A;, A;, S or T is a complete subspace of X,
then Ay, Ay, S and T have a unique common fixed point.

Proof. The proof of Corollary 3.1 follows from Theorem 3.1 by putting i = 1 and j=2.

Corollary 3.2. Let d be a symmetric for X that satisfies (W. 3), (W.4) of Wilson and (Hg).

Let A, B and T be self mappings of a metric space (X,d) such that

(HAX,BX c TX.

(if) (A, T) is weakly compatible,

(iii) (A, T) or (B,T) satisfies the property (E.A.),

(iv) d(Ax,By) < max {d(Tx, Ty),d(A Tx),d(By,Ty), d(AxTy),d(By, T}

If the range of one of the mappings A, B or T is a complete subspace of X, then

() Aand T have a common fixed point,

(I1) B and T have a common fixed point provided that (B, T) is weakly compatible.

(1 A, B, Sand T have a unique common fixed point provided that (1) and (I1) are true.

Corollary 3.3. .Let d be a symmetric for X that satisfies (W.3),(W.4)and(Hg).Let G, T be self mappings of a
metric space (X,d) such that (i) d(Ty,Ty) <¢ (max{d(Gy,Gy),

d(Gyx, Ty),d(Gy,T,),1/2[d(G,, Ty)+ d(Gy,Ty)} for all (x,y) € X,

(ii)G and T are weakly compatibles, (iii)T and G satisfy the property (E.A), and

(iv)TX cGX .If the range of one of the mappings G or T is a complete subspace of X,

then G and T have a unique common fixed point.

Corollary 3.4. Let d be a symmetric for X that satisfies (W.1) of Wilson and (Hg).

Let Sand T be two weakly compatible self mappings of a metric space (X,d) such that

(i) d(TxTy) <@ (max{d(S,S,),d(SxT,),d(Sy,T,), 1/2[ d(Sx,T,)+d(Sy, T,)]} for all (x,y) € X,

(ii) Sand T satisfy the property (E.A.) and

(iii) SX < TX. If the range of S or T is a complete subspace of X, then S and T have a unique common fixed
point.

Theorem 3.2. Let d be a symmetric for X that satisfies (W.3),(W.4) and (Hg). Let A, B, T and S be self
mappings of a metric space (X,d) such that (i) d(Ax,By) <ad(B,, T){[1 + d(A,,S)]/1+d(S, ,T,)}+
BlA(By, T,)+ d(A,S)1+ V[A(By,S,)+ d(A,, T,)]+8 d(S,,T,) for all (x,y) xe X*with a, B, y, 820 and a + B+ 2y + &
<1 (ii) (A,S) and (B, T) are weakly compatibles. (iii) (A, S) or (B, T) satisfies the property (E.A.) (iv) AXcTX
and BXcSX. If the range of one of the mappings A, B, S or T is a complete subspace of X, then A, B, Sand T
have a unique common fixed point.

Proof. Suppose (B, T) satisfies the property (E.A). Then there exists a sequence {X,} in X such that
lim, 5. d(Bx,,t) = lim,5. d(Tx,,t) =0 for some t € X. Since BX cSX, there exists in X a sequence (y)
in X such that Bx, = Sy,. Hence lim, ., d(Sy,,t) = 0.

Let us show that lim,, 5. d(Ay,,t) =0

It is enough to prove that Ay, = Bx,. Suppose not, by (1), we get

d(Ayn,BXn) <a d(BanTXn){ [ 1+ d(AYn ) SYn)]/l + d(Syn JTxn)}-I-B[d(anTxn)-l-

d (Ay,, Sy )1+V[d(Bx,, Sy, )+ d(Ayy, Tx,)]+0 d(Syy Txy),

<ad(Bx,,Tx,) {[ 1+ d(Ay,, Bx,)]/1 + d(Bx, , Tx,)}+Bld(Bx,, Tx,)+d(Ay, Bx,)]+VId(Bx, Sy, ) +d(Ay,, Tx,)
1+ 0d(Bx,,Tx,)

For sufficiently large n,

d(Ayn,BXn)<0+ B[0+d(Ayn,BXn)]+ Y[0+d(AYs, TXn) < Bd(AYn,BXn)+ YA(AYn, TXn)

= (B+y) d(Ay,,Bx,) (since, lim, .. d(Bx,,t) = lim, 5. d(Tx,,t) = 0)

This is a contradiction, lim,, 5. d(Ay,,Bx,) =0

By (W.3), we deduce that lim,, 5., d(4y,,t) =0

Suppose that SX is a complete subspace of X. Then t = Su for some ue X

Subsequently, we have lim,, 5. d(4y,,S,) =lim,_,.. d(Bx,,S,)=lim,_,. d(Tx,,S,)=lim,_,.. d(Sy, ,S,) =0
Using (1),

d(Au,Bxn) < ad(Bxn, Tx){ [ 1+ d(A,,S)]/1 +d(S, , Tx, ) HBlA(Bx,, Tx, ) +(d(A,S,)]+VId(Bx,,.S, )+
d(A4,.Tx,)]+0d(S,,Tx,)

Letting n — ~, we havelim, .. d(4,, Bx,,) < Bd (A,Sy) +Yd(Au,Sy)

d(Au,Su)< (B+ V)d(Au,Su)-

This is a contradiction for A, # S,.

The weakly compatibility of A and S implies that

AS, =SAand then AA,= AS,= SA, = SS..

Since AX cTX, there exists ve X such that A, = T,. Therefore A,=S,=T..

We claim that T, = B,. If not condition (1) gives
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d(A,B) < ad(B,T) {[ 1 + d(A,,S)I/1 +d(S, ,T,)}+ BlA(B,.T,) + d(AuS)I+V[d(BySu)+ d(AL T+
5d(S,Ty) < ad(BuAy) {[1 + 01/(1 + 0)}+B[d(B,.T,)+0]+y[d(By.A,)+ 0]+5 (0)

d(Au,B.) < ad(B,Ay)+Bd(B, 4, )+vd(B,A,).

d(Au,By) < (a+B+y)d(Bu,Ay).

This is a contradiction for A, # B..

Therefore A, = Byand then B, = A, =T,.

This implies that A, =S, =T, = B,.

But (B, T) is weakly compatible implies BT, = TB,and TT,= TB, = BT, = BB,.

We shall prove that A, is a common fixed point of A and S.

Suppose that AA, #A,.

d(AuAA,) = d(AA,B))

<ad(B,Ty) {[1+ d(AA,,SA)]/1+d(SA, ,T,)}+B[d(B,.T,)+ d(AA,SA)]+Y[d(B,,SA)+ d(AA,T,)]+

0 d(SA,Ty)

=y[d(B,,AA)+ d(AA,,B,)]+d d(AA,,B.)

= (2y+ 9)d(AA,BY)

This is a contradiction for AA# B..

Therefore AA, = B, and then AA, = A= SA, (since AA, = SA))

Therefore A, is a common fixed point of A and S.

To prove that B, = A, is a common fixed point of B and T.

Suppose B, # BB,.

d(B.,BB,) = d(A, BB,)

<ad(BB,,TB){[1 + d(A,,S,)]/1+d(S, ,TB,)}+B[d(BB,,TB,) + d(A,Su)]+Y[d(BB,,Su)+ d(A,, TB,)]+
0d(S,, TB,)

= y[d(BB\,AJ)+ d(A,,BB)]+5 d(Ay,BB,)

= (2y+ 9)d(A,,BB,)= (2 v+ 9)d(B,,BB.)

which is a contradiction for B, # BB,.

Therefore B, = A,= BB,= TB..

This means that B, is a common fixed point of B and T.

Therefore, A, is the common fixed point of A and S.

B, = A, is the common fixed point of Band T.

Therefore, A, is the common fixed point of A, B, T and S.

The proof is similar when TX is assumed to be a complete subspace of X.

The cases in which AX or BX is a complete subspace of X are similar to the

cases in which SX or TX respectively is a complete space because AX cTX and

BXcSX.

Uniqueness. Suppose u, v are two fixed points of A, B, T and S.

Then A,=S,=B,=T,=u.

and A,=B, =T, =S,=V. Then for u# v, and then (1) gives d(u,v)=d(A.,B\)

<adB,T){[1+ dA,,S)I/1+d(S, ,T,)HBAB,.T,)+( d(Au,S)I+V[A(BY.Sy)+ d(ALTY]+d d(SuTy) =
Y[d(Bv.Au)+ d(Ay,B))]+5 d(A,,B,)

=(2 y+ O)d(Ay,By)= (2 v+ §)d(u,v).

This is a contradiction for u# v.Therefore u = v.

This means that A, B, T and S have unique common fixed point.

For three maps, we have the following result by altering the condition (i) in theorem 3.2.

Corollary 3.3. Let d be a symmetric for X that satisfies (W.3), (W.4) of Wilson and (Hg). Let A, B and S be self
mappings of a metric space (X,d) such that

(i) AX, BXcSX,

(ii) (A, S) is weakly compatible.,

(iii)(A, S) or (B, S) satisfies the property (E.A.),

(iv) d(ABy) < ad(B,S) ([ 1 + d(A,,S,)I/1+d(S, ,S,)}+BA(BY.S,) + d(ASIT+V(By.S)+ d(A,S,)]+5
d(Sx,Sy) for all (x,y) xe X?with a, B, y, 820 and a+ B+ y + &< 1. If the range of one of the mappings A, B or S
is a complete subspace of X, then A, B and S have a unique common fixed point.

For two maps, we have the following result by altering the condition (i) in theorem of Aamri [1].

Theorem 3.3. . Let d be a symmetric for X that satisfies (W.3) of Wilson and (Hg).

Let S and T be weakly compatible self mappings of a metric space (X,d) such that

(i) d(TyTy) < af d(T, S,)/1 + d(S,, T, }) +Bd(Tx,S)+Y[d(Ty,Sx)+ d(Ty T,)]+8 d(S,, T,) for all (x,y) x € X* with
a, By, 020 and a+ B+ 2y +d<1 (ii)T and S satisfy the property (E.A.), (iii) TXcSX, If SX or TX is a
complete subspace of X, then T and S have a unique common fixed-point.
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Proof. Since T and S satisfy the property (E.A). Then there exists a sequence (X, in X such that
lim,, 5. d(Sx,,,t) = lim,s. d(Tx,,t) = 0 for some te X.

Therefore, by (Hg), we have lim,, 5.. d(Tx,,Sx,,)) =0

Suppose that SX is a complete subspace of X.

Then t=S, for some ue X.

We claim that T,=S,

By (1) we have d(Tx,Ty) < a{d(Tx,,Sx,)/1+ d(Sx,,T,)} +B( d(TXn,SXn)]+Y[d(Ty,SXn)+ d(TXn, Ty)]+
O d(Sxn, Ty). Letting n->, we have

lim,, .. d(Tx,, T,,))<lim, . {y[ d(T,, Sx,) +d(TX,, Ty)]+0 d(Sxn, T)}

d(Sy, Tu)<2 yd(Sy, Tu)+ &d(Su, Tu)=(2y +9) d(Su, Tu)

This is a contradiction S, #T,. Therefore, S, =T,.

Since S and T are weakly compatible, ST, =TS, and therefore TT,=TS, = ST, = SS,.

Let us prove that T, is a common fixed point of T and S. Suppose T, #T Ty,

Then d(Ty TTu) <a{ d(T,,S,)/1 + d(S,, TT,)} +B( d(Tu,Su)l+V[d(TTy,Su)+ d(Tu, TT)]+6 d(S, TT)
<2y +0)d(T,,TTy)

This is a contradiction for T #TT,.

Therefore, T,=TT, and ST,=TT,=T..

The proof is similar when TX is assumed to be a complete subspace of X since TX c SX.
Uniqueness. Suppose T, T, are two fixed points of T and S withT #T,. Then

d(Ty,T\) <a{d(T,,S,)/1 +d(S,, T,)} +B( d(Tu,Su)I+YId(Ty,Su)+ d(Ty, TY]+S d(Ty, Ty)
Therefore d(T,, T\)<(2y +0)d(T,, T).

This is a contradiction for T, #T,

Therefore, T,=T, and hence, T and S have unique common fixed point.
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