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Abstract-Welding defects influence the desired properties of welded joints giving Fabrication expertsa common
problem of not being able to produce weld structures with optimal strength and quality.In this present work,
fatigue was minimized using artificial intelligence such as the Response Surface Methodology.An optimal design
of experiment was developed which was used as a guiding plan to conduct the experiment., thereafter a second
order polynomial model was developed which was used to minimize the fatigue with very significant statistical
results. The result shows that the quadratic model was the most suitable for minimizing the fatigueresponse with
a P-value < 0.05
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I. INTRODUCTION

Manual metal arc welding was first invented in Russia in 1888 [1]. It involved a bare metal rod with
no flux coating to give a protective gas shield.welding was defined as an efficient and economical method for
joining of metals. Welding has made significant impact on the large number of industry by raising their
operational efficiency, productivity and service life the plant and relevant equipment [2]. Welding is one of the
most common fabrication techniques which is extensively used to obtained good quality weld joints for various
structural components. Welding is a joining process which involves intensive heating of the weldments, which
causes an uneven temperature distribution and consequently local plastic strain in the weld and surrounding
metal [3]. The mismatch of the plastic strains between the weld and the parent metal causes compressive stress,
which can have adverse effects on the mechanical properties. Welding in steel structures design happens to be
most the widely employed joining technology and it is well known to suffer challenges of corrosion and
fatigue.Welding defects influence the desired properties of welded joints giving Fabrication experts a common
problem of not being able to produce weld structures with optimal strength and quality. The reason TIG is
becoming the most preferred technology is because it has the cleanest weld bead [4].TIG welding is done in a
controlled atmosphere using a tungsten electrode which serves to produce an arc to melt the metal. Direct
current (DC) or Alternating Current of High Frequency (ACHF) is used to enable the resulting continuous and
stable arc without touching the metal electrode [4]. The use of artificial intelligence to analyze welding
parameters and develop mathematical models produce contour plots relating important input parameters such
as penetration size and reinforcement height of the weld bead was highlighted [5]. severaltechniques connected
to neural networks was explained and how they can be used to model TIG weld output parameters,the
experimental data consisted of values for voltage, current, welding speed and wire feed speed and the
corresponding bead width, penetration, reinforcement height and bead cross-sectional area [6].The performance
of neural networks for weld modelling was presented and evaluated using actual welding data. It was concluded
that the accuracy of neural networks modelling is fully comparable with the accuracy achieved by more
traditional modellingschemes[6]. Evaluation of Artificial Neural Network for monitoring and control of the
plasma arc welding process was done[7].The application of artificial intelligence concepts such as the ANN
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models to predict the mechanical properties of steels, It was found that the three ANN models successfully
predicted the mechanical properties. it was also shown that ANNs could successfully predict multiple
mechanical properties and the result of the sensitivity analysis were in agreement with both findings of the
experimental investigation and reported results in the literature, Furthermore, it was mentioned that the use of
ANNSs resulted in large economic benefits for organisations through minimizing the need for expensive
experimental investigation and/or inspection of steels used in various applications [8]. ANN model was
developed for the analysis and simulation of the correlation between friction stir welding (FSW) parameters of
aluminium plates and mechanical properties of the welded joint. The process parameters consist of weld speed
and tool rotation speed verses the output mechanical properties of weld joint, namely: tensile strength, yield
strength, elongation. Good performance of the ANN model was achieved and the model can be used to calculate
mechanical properties of the welded plates [9].

Il. RESEARCH METHODOLOGY

2.1 Design of Experiment

Design of experiment is a very important step taken to accurately apply artificial intelligent methods to
either minimize or maximize a targeted manufacturing response. The experimental design considers the
following factors such as welding current, gas flow rate, and voltage as input . The experimental matrix was
generated with the design expert software ,the central composite design was the most suitable for this
experiment. This process followed the rules of repetition, randomization and local control so as to achieve an
optimal experimental design. The input factors considered and their levels is shown in the table below

Table2.1: process factors and their range

Parameters Unit Symbol Coded value Coded value
Low(-1) High(+1)

Current Amp A 180 220

Gas flow rate Lit/min F 36 42

Voltage Volt \ 18 24

Table 2.2: Experimental results of fatigue
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2.2. Experimental procedure

Power Hacksaw was used for cutting the mild steel plate to size measuring 60 x 40 x 10mm . The
grinding machine was used for preparing the groove on the double transverse side of the plates of Mild Steel
Subsequently single ‘V’ groove angles (30 degree) were cut in the plates with 2 mm root faces for atotal of 60
degree inclined angle between After the V-groove preparation, the Mild Steel were ready for the welding. The
mild steel plates were tightly clamped during welding. The root gap of 2 mm is provided between the two plates
while performed for the welding. The V-groove butt welding is performed during TIG welding process. The
tungsten non consumable electrode having diameter 3 mm was used in experiment. The argon gas is used as a
shielding gas. The pressure regulator was used to adjust the gas flow rate during operation. The filler metal
ER309L having 2 mm diameter was used for the welding. The direct current Electrode positive (reverse
polarity) was used for the welding

2.3 .Materials used for the experiment

Mild Steel is one of the most common of all metals and one of the least expensive steels used. It is
found in almost every product created from metal. It is easily weldable, very durable. Having less than 2 %
carbon, it will magnetize well and being relatively inexpensive can be used in most projects requiring a lot of
steel.

Figure 2.1: Welded Sample Figure 2.2: TIG Shielding Gas Cylinder Figure 2.3: TIG
Welding Machine

I11. RESULTS AND DISCUSSION
In assessing the strength of the quadratic model towards maximizing the percentage dilution one way analysis of
variance (ANOVA) table was generated which is presented in table 3.1

Table 3.1: ANOVA table for minimizing the weldfatigue
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To validate the adequacy of the quadratic model based on its ability to minimizefatigue the goodness of fit
statistics is presented in table 3.2

Table 3.2: goodness of fit statistics for fatigue
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The optimal equation which show the individual effects, and the combine interactions of the selected input
variables, namely; current, voltage and gas flow rateagainst the mesured fatigue is presented based on actual
factors in Tables 3.3

Table 3.3:Optimal equation in terms of actual factors for minimizing fatigue
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To asses the accuracy of prediction and established the suitability of response surface methodology using the
quadratic model, a reliability plot of the observed and predicted values of the fatigue response was obtained as
presented in Figures 3.1
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Figure 3.1: Reliability plot of observed versus predicted fatigue

To study the effects of combine input variables on fatigue eeach response variable), 3D surface plots presented
in Figure 3.2
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Figure 3.2: A surface plot of voltage and current on fatigue

The objective of this study was to determine the optimum current (Amp), voltage (volts) and gas flow rate
(L/min) that will minimize fatigue.The interphase of the numerical optimization showing the objective function
is presented in Figures 3.3
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The design expert software was used to produce the best optimal solution of that will minimize the fatigue
present in the welds,the optimal solutions is shown in table

Table 3.4: The numerical optimal solution showing minimized fatigue response
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IV. CONCLUSION

In this paper the fatigue response of TIG welding process has been minimized so as to increases the
strength of the weldments.this study has systematically applied the response surface methodology (RSM) to
minimize fatigue of Tungsten inert gas mild steel weld. The results obtainedshows that the fatigue of TIG mild
steel weld are strongly influenced by input variables such as current, and gas flow rate. The surface plot shows
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that current and voltage were observed to have the highest significant effect on the fatigueof TIG mild steel
weld. The result shows that a current of 220 amp, voltage of 36volt, and gas flow rate of 15.13 L/min will result
in a welding process with minimumfatigue of 772.This solution was selected by design expert as the optimal
solution with a desirability value of 96%.
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