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ABSTRACT: 

In 2012, a new numerical model, called sphere-based 3-D DDA, for simulation of granular materials consisting 

of 3-D spheres was presented by the authors (Beyabanaki and Bagtzoglou [1]). In the existing sphere-based 3-D 

DDA methodand in studies performed by other researches,the penalty method is used to enforce sphere contact 

constraints. Although thisapproach is fairly simple to implement, it can lead to inaccuracies that may be large 

for small values of the penalty number.Moreover, this method creates sphere contact overlap that may violate 

the physical constraints. In this study, the augmented Lagrangian method is used to overcome these limitations. 

For this purpose, contact constraints in sphere-based 3-D DDAare modifiedandthe corresponding formulations 

are presented.The modified contact constraints have been implemented into a sphere-based 3-D DDA numerical 

codeand two test cases are studied inorder to verify the formulations. The results show the capability of the 

modified sphere-based 3-D DDA. 

KEYWORDS: sphere-baseddiscontinuous deformation analysis, contact constraints, augmented Lagrangian 

method, Penalty method, numerical method. 
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I. INTRODUCTION 
Discontinuous Deformation Analysis (DDA) is a displacement-based method that was originally 

developed by Shi [2, 3] for modeling large deformation in fractured rock masses. DDA provides a useful tool to 

analyze the mechanical response of discrete blocks. Several studies have been conducted to validate and develop 

this numerical approach. Applications of the DDA in rock mechanics and rock engineering are reviewed by Jing 

and Hudson [4], Jing [5], and Ohnishi and Nishiyama [6]. In a comprehensive study, MacLaughlin and Doolin 

[7] reviewed more than 100 validation studies on the DDA. Moreover, Shi [8] presented applications of the 

DDA to rock stability analysis. Applications of the DDA to model slopes and underground openings are also 

reviewed by Hatzor and Bakon-Mazor [9].  

Basic formulations of matrices for different potential terms are presented in detail by Shi [10] and Wu 

et al. [11]. Applications of 3-D DDA were demonstrated by Liu et al. [12] and Yeung et al. [13, 14]. As the first 

step in developing 3-D DDA, its contact model was presented and, for this purpose, a point-to-face model for 

contacts between polyhedral blocks in 3-D DDA was developed by Jiang and Yeung [15]. Also, Wu et al. [16] 

developed a new contact searching algorithm for frictionless vertex-to-face contact problems. Moreover, Yeung 

et al. [17] and Wu [18] presented different algorithms for edge-to-edge contacts. Finally, a new algorithm to 

search and calculate geometrical contacts in 3-D was presented by Beyabanaki et al. [19]. Ahn and Song [20] 

presented a new contact definition algorithm for 3-D DDA. As the next step, block deformability in 3-D DDA 

was improved by Beyabanaki et al. [21, 22] who implemented 8-node and 20-node hexahedral isoparametric 

finite elements into 3-D DDA. Furthermore, as an alternative method to improve block deformability in 3-D 

DDA, high-order displacement functions were used by Beyabanaki et al. [23, 24]. Finally, validation and 

application of 3-D DDA with tetrahedron finite element meshed block were presented by Liu et al. [25]. Before 

using a method for a dynamic problem, it should be demonstrated that the method is able to model dynamic 

conditions. For this purpose, Beyabanaki et al. [26] compared the 3-D DDA solution for dynamic block 

displacement with analytical solutions to study the validity of the method in order to show the capability of 

polyhedral-based 3-D DDA to model dynamic problems. Moreover, Bakun-Mazor et al. [27] validated 3-D 

DDA by comparing the numerical results obtained for modeling dynamic, single, and double face sliding of a 

block with their proposed analytical solution. 3-D DDA was coupled with smoothed particle hydrodynamics by 
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Zhang et al. [28] to study the geological phenomena associated with fluid-solid interaction. Zhu et al. [29] 

integrated 3-D DDA with binocular photogrammetry and evaluated the stability of tunnels in jointed rock 

masses. To address rock-cutting and rock-penetration problems, Zhao et al. [30] coupled 3-D DDA with a 

distinct lattice spring model. Zhang et al. [31] constructed new types of 3-D DDA slope models with GIS 

techniques and Liu et al. [32] analyzed the velocity distribution and the key point displacements of the brick 

masonry buildings using 3-D DDA. Recently, Beyabanaki [33] reviewed applications of 3-D DDA. 

Relatively little work on the development of the DDA in particulate media has been published. Disk-

based DDA in 2-D to model particulate media was presented by Ke and Bray [34]. Rein and Andrés [35] used 

the method to model granular transport in vibrating feeders. The ability of the DDA to model the response of 

systems of disks was presented by Thomas and Bray [36], Thomas [37], and Koyama et al. [38]. Beyabanaki 

and Bagtzoglou[1, 39] presented a new formulation of sphere-based 3-D DDA. The same authors presented a 

disk-based 2-D DDA with a new contact model (Beyabanaki and Bagtzoglou [40]) and investigated the 

accuracy of dynamic disk-based DDA (Beyabanaki and Bagtzoglou [41]). Beyabanaki et al. [42] successfully 

applied disk-based DDA to simulate the Donghekou landslide triggered by the Wenchuan earthquake. A friction 

contact model in sphere-based 3-D DDA was presented by Huang et al. [43]. Wang et al. [44] presented a new 

sphere-to-edge contact for sphere-based 3-D DDA. Recently, discontinuous deformation analysis for ellipsoids 

using cone complementary formulation was presented by Fan et al. [45]. 

The penalty method was used in the sphere-based 3-D DDA studies to enforce contact constraints at 

the sphere interface. The accuracy of the contact solution depends highly on the choice of the penalty number, 

and the optimal number cannot be explicitly found beforehand. A very high penalty number leads to progressive 

ill-conditioning of the resulting system, and low value leads to overlaps between spheres or spheres and 

boundaries. Therefore,high-accuracy solutions may not be obtained using this method. 

The Augmented Lagrangian Method (ALM) is a well-known method to overcome these problems for 

equality constrained problems [46]. In this study, contact constraints are enforced in sphere-based 3-D DDA 

using this method. Two illustrative examples are presented to demonstrate this new approach. 

 

II. SPHERE-BASED 3-D DDA 
Sphere-based 3-D DDA is an implicit technique, and involves formulation and solution of a system of 

simultaneous equilibrium equations. In this method, the total potential energy is the summation of all potential 

energy sources for each sphere, which involves the potential energy contributed by the point loads on a sphere, 

inertia forces, volume forces, fixed points, and potential energy when the spheres contact each other. 

Assuming that the spheres are rigid, the relation between them can be presented as below[1]: 

 
𝑢
𝑣
𝑤
 = [𝑇𝑖(𝑥,𝑦, 𝑧)].  𝐷𝑖  (1) 

where 

 𝑇𝑖 𝑥, 𝑦, 𝑧  =  

1 0 0 0 (𝑧 − 𝑧0)   − (𝑦 − 𝑦0)

0 1 0 −  𝑧 − 𝑧0  0 (𝑥 − 𝑥0)

0 0 1  𝑦 − 𝑦0 −  𝑥 − 𝑥0  0

  

 

(2) 

and 

{𝐷𝑖}
𝑇 = {𝑢0𝑣0𝑤0𝑟𝑥𝑟𝑦𝑟𝑧}  (3)  

 

(𝑥0, 𝑦0 , 𝑧0) are the coordinates of the sphere center, and (𝑢0, 𝑣0 ,𝑤0) represents rigid body translations; 

(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) indicates the rotation angles in radians of sphere 𝑖 with a rotation centre at (𝑥0 , 𝑦0 , 𝑧0). [𝑇𝑖(𝑥, 𝑦, 𝑧)] is 

the first order displacement function, and {𝐷𝑖} is the vector of displacements of sphere 𝑖 in three dimensions. 

To eliminate the possibility for the error of free expansion under rigid body rotation, the exact solution 

for the displacements can be used to compute the components of (𝑢, 𝑣,𝑤) due to (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) by extending the 

following rigid body rotation: 
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𝑢 = 𝑢0 + (𝑥 − 𝑥0)(𝑐𝑜𝑠 𝑟𝑧 − 1)− (𝑦 − 𝑦0) 𝑠𝑖𝑛 𝑟𝑧
+(𝑧 − 𝑧0) 𝑠𝑖𝑛 𝑟𝑦 + (𝑥 − 𝑥0)(𝑐𝑜𝑠 𝑟𝑦 − 1)

𝑣 = 𝑣0 + (𝑥 − 𝑥0) 𝑠𝑖𝑛 𝑟𝑧 + (𝑦 − 𝑦0)(𝑐𝑜𝑠 𝑟𝑧 − 1)
+(𝑦 − 𝑦0)(𝑐𝑜𝑠 𝑟𝑥 − 1)− (𝑧 − 𝑧0) 𝑠𝑖𝑛 𝑟𝑥
𝑤 = 𝑤0 + (𝑧 − 𝑧0)(𝑐𝑜𝑠 𝑟𝑦 − 1)− (𝑥 − 𝑥0) 𝑠𝑖𝑛 𝑟𝑦
+(𝑦 − 𝑦0) 𝑠𝑖𝑛 𝑟𝑥 + (𝑧 − 𝑧0)(𝑐𝑜𝑠 𝑟𝑥 − 1)

  (4) 

 

The total potential energy for an N spheres system can be expressed in matrix form as follows: 

 
 
 
 
 
[𝐾11][𝐾12][𝐾13 ]. . . [𝐾1𝑁]

[𝐾21][𝐾22 ][𝐾23 ]. . . [𝐾2𝑁]

[𝐾31][𝐾32 ][𝐾33 ]. . . [𝐾3𝑁]
⋮⋮⋮⋱⋮
[𝐾𝑁1][𝐾𝑁2][𝐾𝑁3]. . . [𝐾𝑁𝑁 ] 

 
 
 
 

 
 
 

 
 

{𝐷1}

{𝐷2}

{𝐷3}
⋮
{𝐷𝑁} 

 
 

 
 

=

 
 
 

 
 

{𝐹1}

{𝐹2}

{𝐹3}
⋮
{𝐹𝑁} 

 
 

 
 

 (5) 

where {𝐷𝑖} and {𝐹𝑖} indicate displacement variables and loading and moments caused by the stresses 

and external forces acting on sphere 𝑖, respectively. The stiffness submatrices [𝐾𝑖𝑗 ]   𝑖=𝑗  depend on the material 

properties of sphere 𝑖 , and [𝐾𝑖𝑗 ]   𝑖≠𝑗 is defined by the contacts between spheres 𝑖  and 𝑗 . The equilibrium 

equations for each time step are derived by minimizing the total potential energy. The total potential energy 𝛱 is 

the summation over all potential energy forms calculated as below [1]:  

𝛱 = 𝜋𝑒 + 𝜋𝑖𝑠 + 𝜋𝑝 + 𝜋𝑏 + 𝜋𝑖 + 𝜋𝐶 + 𝜋𝑛 + 𝜋𝑠 + 𝜋𝑓  (6) 

where 𝜋𝑒= the potential energies due to disk stiffness; 𝜋𝑖𝑠= the potential energy due to initial stress; 

𝜋𝑝= the potential energy due to point loading;𝜋𝑏= the potential energy due to body force; 𝜋𝑖= the potential 

energy due to inertia forces; 𝜋𝐶= the potential energy due to constrained spring; 𝜋𝑛= the potential energy due to 

normal contact; 𝜋𝑠= the potential energy due to shear contact; and 𝜋𝑓= the potential energy due to friction force.  

 

The simultaneous equations are derived by minimizing the total potential energy 𝛱 of the disk system: 

[𝐾𝑖𝑗 ] =
𝜕2𝛱

𝜕𝑑𝑖𝑟𝜕𝑑𝑗𝑠
, 𝑟, 𝑠 = 1,2,3 

 𝐹𝑖 = −
𝜕𝛱(0)

𝜕𝑑𝑖𝑟
, 𝑟 = 1,2,3 

(7) 

 

where 0 refers to the initial state of each time state. 

 

III. COMPARISON BETWEEN THE PENALTY METHOD AND ALM 
The main features of the penalty method are [47]: 

o There are no extra equations required by enforcement of constraints. 

o The solution can easily be obtained by simply adding contact components to the stiffness matrix. 

o The contact solution depends highly on the choice of the penalty number. The constraints are only satisfied 

in an approximate manner, and the optimal number cannot be explicitly found beforehand. 

o If the penalty number is too large, the simultaneous equilibrium matrix becomes difficult to solve. 

However, the constraints are poorly satisfied if it is too low.  
 

The ALM uses penalty stiffness but iteratively updates the contact traction to impose the contact constraints 

with a specified precision. The main features of this method are: 

o In this method, no additional equations are required. 

o In order to avoid the ill conditioning of the stiffness matrices, large penalty values are not required. 

Nevertheless, if the initial penalty number is too small, a large number ofiterations isrequired. 

o The constraints are satisfied within a user-defined required tolerance. 

 

IV. CONTACT MECHANICS USING ALM 

In the penalty method, when a sphere-sphere or sphere-boundary contact occurs, the normal spring 

with a stiffness of 𝑃𝑛  is introduced into the formulation to return the point to the surface along the shortest 

distance. 
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As shown in Figure 1, assume 𝑃1(𝑥1 , 𝑦1 , 𝑧1) indicates the location of the reference point of sphere 𝑖 
before a displacement increment and 𝑃1

∗ represents the location after the displacement increment. The 

point𝑃0(𝑥0 , 𝑦0 , 𝑧0) represents the projection of point 𝑃1 on the reference plane 𝑆 and 𝑃0
∗ indicates this point after 

the displacement increment. Moreover, assume (𝑢1, 𝑣1 ,𝑤1) and (𝑢0, 𝑣0 ,𝑤0) are the displacement increments of 

points 𝑃1 and 𝑃0, respectively, and  the unit normal vector of the reference plane 𝑆 is 𝒏 .  
 

 
 

Fig.1. Sphere-sphere and sphere-boundary contacts(adapted from Beyabanaki and Bagtzoglou[1]) 
 

 

When using the ALM, the contact force at the contact point can be accurately approximated by 

iteratively calculating the Lagrange multiplier 𝜆∗. A first-order updated value for 𝜆∗  can be written as follows: 

𝜆 ≈ 𝜆𝑙+1
∗ = 𝜆𝑙

∗ + 𝑃𝑛 .𝑑𝑛  (8) 

where the penalty number,𝑃𝑛 , can be variable and does not have to be a very large number as in the 

penalty method. In Equation (8), 𝜆𝑙
∗  is the Lagrange multiplier at the l-th iteration and 𝜆𝑙+1

∗ is the updated 

Lagrange multiplier, and the normal distance 𝑑𝑛  of point 𝑃1
∗ from the reference plane 𝑆 is: 

𝑑𝑛 = 𝑀 + [𝐻𝑖]{𝐷𝑖}− [𝑄𝑗 ]{𝐷𝑗 } (9) 

where 

𝑀 = 𝒏 .  

𝑥1 − 𝑥0

𝑦1 − 𝑦0

𝑧1 − 𝑧0

  
(10) 

[𝐻𝑖] = 𝒏 .𝑇𝑖(𝑥1 , 𝑦1 , 𝑧1) (11) 

[𝑄𝑗 ] = 𝒏 .𝑇𝑗 (𝑥0 , 𝑦0 , 𝑧0) (12) 

At the l-th iteration, the potential energy resulting from the contact force is calculated as follows: 

𝜋 = 𝜆𝑙
∗ 𝑑𝑛 +

1

2
𝑃𝑛𝑑𝑛

2
 

(13) 

Equation (13) consists of two components. The first component is the strain energy resulting from the 

iterativeLagrange multiplier 𝜆𝑙
∗ , and the penalty constraint creates the second. The contribution of the second 

component to the simultaneous equilibrium equations was already derived by Beyabanaki and Bagtzoglou [1]. 

The first component of Equation (13) can be written as: 

𝜋∗ = 𝜆𝑙
∗  

𝑀

𝑙
+ [𝐻𝑖][𝐷𝑖]− [𝑄𝑗 ][𝐷𝑗 ]  (14) 

 

The derivatives of 𝜋∗with respect to 𝑑𝑘𝑖and 𝑑𝑘𝑗 at zero are: 

𝑓𝑘𝑖 = −
𝜕𝜋∗(0)

𝜕𝑑𝑘𝑖
 (15) 

𝑓𝑘𝑗 = −
𝜕𝜋∗(0)

𝜕𝑑𝑘𝑗
 (16) 

 

where 0 refers to the initial state of each time state. They form the following submatrices: 

𝑓𝑘𝑖 = −𝜆𝑙
∗. [𝐻𝑖] (17) 

𝑓𝑘𝑗 = −𝜆𝑙
∗. [𝑄𝑗 ] (18) 

 

For the ALM, the combined contribution of the first and second components of Equation (13) to the 

simultaneous equilibrium equation is summarized below. 
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The following matrices can be added to submatrices [𝐾𝑖𝑖 ], [𝐾𝑖𝑗 ], [𝐾𝑗𝑖 ], and [𝐾𝑗𝑗 ] in the global stiffness 

matrix: 

[𝐾𝑖𝑖 ] = 𝑃𝑛 [𝐻𝑖 ]
𝑇[𝐻] (19) 

[𝐾𝑖𝑗 ] = 𝑃𝑛 [𝐻𝑖 ]
𝑇[𝑄𝑗 ] (20) 

[𝐾𝑗𝑖 ] = 𝑃𝑛 [𝑄𝑗 ]𝑇[𝐻𝑖] (21) 

[𝐾𝑗𝑗 ] = 𝑃𝑛 [𝑄𝑗 ]𝑇[𝑄𝑗 ] (22) 

and the following vectors are calculated and then added to the global force vector: 

[𝐹𝑖] = −(𝜆𝑙
∗ + 𝑃𝑛

𝑀

𝑙
). [𝐻𝑖]

𝑇  
(23) 

[𝐹𝑖] = −(𝜆𝑙
∗ + 𝑃𝑛

𝑀

𝑙
). [𝑄𝑗 ]𝑇 

(24) 

The final exact contact forces can always be obtained by the iterative method, even with small initial 

values of the penalty number. The iterative procedure for the ALM is presented in Figure2.  

 
 

 

Fig.2. Flowchart of ALM procedure used in sphere-based 3-D DDA 

 

V. EXAMPLE 1: FUNNEL FLOW 
To investigate the proposed contact mechanics, an example of funnel flow is presented, and the results 

are compared with the results obtained by using the penalty method in the original formulation. 

As shown in Figure 3, there are two layers of spheres with different sizes above a funnel that travel 

vertically because of gravity. Each disk has a density of 2500 𝑘𝑔/𝑚3; and the stiffness of the normal contact 

spring, the time step size, and the friction angle are 𝑃 = 1 × 105𝑁/𝑚, 0.01𝑠 and 5∘, respectively. Figures 4 and 

5 show the configuration of spheres after 6s and 8.6s using the penalty method and the ALM, respectively. As 
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can be seen, when using the ALM, no sphere interpenetration occurs, even though the initial penalty number is 

low. However, without the ALM, there is contact overlap and interpenetration. 
 

 

 

Fig.3. Initial configuration of the funnel system 
 
 

 
(a)                                                              (b) 

 

Fig.4. Results of sphere-based 3-D DDA using the ALM: (a) after 6s, (b) after 8.6s 
 

 
 

(a)                                                             (b) 

 

Fig.5. Results of sphere-based 3-D DDA using the penalty method: (a) after 6s, (b) after 8.6s 
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VI. EXAMPLE 2: MULTIPLE SLOPES 
The example used to test the original developed contact theory for sphere-based 3-D DDA (Beyabanaki 

and Bagtzoglou [1]) is presented in this section, and the results are compared with the results obtained by using 

the penalty method in the original formulation. 

This case is a landslide analogy. In this example, as shown in Figure 6, a slope including five inclined 

planes is considered. A total of 180 spheres rest on the highest inclined plane. Under the action of gravitational 

force, the spheres move on the planes. Density of the spheres is 3500 𝑘𝑔 𝑚3 , and the stiffness of the normal 

contact spring and the time interval are assumed to be 𝑃 = 1 × 104𝑘𝑁/𝑚 and 0.05𝑠, respectively. Figures 7 

and 8 show the configuration of spheres after 20s, 47s, and 63s using the penalty method and the ALM, 

respectively. As can be seen, the spheres move along the inclined planes without any violation of boundary 

constraints when the ALM is used. However, as shown in Figure 8, a small penalty number with the classical 

penalty method is unable to enforce the interpenetration constraint. 

 

 
Fig.6. Initial configuration 

 

 
(a) 

 

 
(b) 
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(c) 

Fig.7. Results of sphere-based 3-D DDA using ALM: (a) after 20s, (b) after 47s (c) after 63s 
 

 
(a) 

 

 
(b) 
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(c) 

 

Fig.8. Results of sphere-based 3-D DDA using the Penalty method: (a) after 20s, (b) after 47s (c) after 63s 

 

VII. CONCLUSIONS 
In the existing sphere-based 3-D DDA method, the contact constraints are enforced using the penalty 

method. The contact solution depends highly on the choice of the penalty number in this approach. Also, the 

optimal number cannot be explicitly found beforehand. If the penalty number is too low,the constraints are 

either not met or poorly satisfied. However, if the number is too large, the simultaneous equilibrium equations 

become difficult to solve. Therefore, it is important to use the ALM approach. In this paper, contact constraints 

are enforced using the ALM and two illustrative examples are presented to demonstrate the new model. Using 

the ALM to enforce contact restraints retains the simplicity of the penalty method and reduces its disadvantages. 
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