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ABSTRACT: Uncertainty is a common phenomenon in everyday interaction and in all areas of human lives 

especially when dealing with information from different sources. These information may be unreliable based on 

their sources or method of collection such as random sampling or other statistical methods rather than 

categorical means. Uncertainty may arise from incomplete data or information, ambiguous and inconsistent 

information. In most tasks that requires intelligent behavior, the problem of uncertainty cannot be completely 

ruled out.In AI and expert systems, uncertainty is measured by using relative frequencies or by combining 

various statistical models based on data and information collected from various sources. Some of these 

measures are objective in nature while others may be from domain experts. All these measures all these 

measures ae usually combined to make inference and decisions. That is, the expert system should be able to 

justify its assessments of the uncertainty and its reasoning procedures.This paper discussed managing 

uncertainty in artificial intelligence and expert systems using Bayesian Theory and Probability reasoning.  
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I. INTRODUCTION 
One of the rapidly developing areas in artificial intelligence (AI) is managing uncertainty [1] [2] [3]. It 

is not surprising that intelligent systems are expected to be able to exploit uncertain or vague information since 

human beings also reason and decide without having precise and certain information[4] [5].Uncertainty is a 

common phenomenon in everyday interaction and in all areas of human lives especially when dealing with 

information from different sources. These information may be unreliable based on their sources or method of 

collection such as random sampling or other statistical methods rather than categorical means[6]. Uncertainty 

may arise from incomplete data or information, ambiguous and inconsistent data or information. In most tasks 

that requires intelligent behavior, the problem of uncertainty cannot be completely ruled out. For example, tasks 

such as planning, reasoning, complex problem solving, decision-making and classification problems there are 

elements of uncertainty to some extent because all the tasks require intelligence; may it be humans or machines. 

Even for machine which are expert systems, the software is developed by human experts and they are also liable 

to errors[8] [9]. 

Most times, the problem of misclassification often arise even when some of the best classification tools 

and algorithms are used. The simple reason is because these tools and algorithms are developed by human 

experts which may be liable to errors [10]. These errors arising from misclassification can be false positive (i.e., 

a situation in which the result of a test is positive when it ought to be negative); this situation can occur for 

instance in pregnancy test where the test result indicate that a woman is pregnant when indeed she is not or 

when a person test positive to HIV when indeed the person does not have HIV [11] [12].The other condition is 

false negative (i.e., a situation in which the result of a test is negative when it ought to be positive); this situation 

can occur for instance in pregnancy test where the test result indicate that a woman is not pregnant when indeed 

she is pregnant or when a person test negative to HIV when indeed the person indeed have HIV. It can also 

occur in other test conditions such as in cancer, tuberculosis, etc. these are misclassification problems. They 

could cause serious problems especially in medical conditions as they may render a supposed patient to have 
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wrong diagnosis and wastage of money and serious anxiety and problems that may arise from wrong diagnosis 

of ailments [13]. 

In AI and expert systems, uncertainty is measured by using relative frequencies or by combining 

various statistical models based on data and information collected from various sources. Some of these measures 

are objective in nature while others may be from domain experts [14]. All these measures all these measures ae 

usually combined to make inference and decisions. However, for users to be convinced about an expert system 

especially when the user requested that the model and its conclusion be made explicit, there is need for the 

human expert and those who built the expert system to provide documentation and detailed explanation about 

how the expert system was built and how it works [15] [16]. That is, the expert system should be able to justify 

its assessments of the uncertainty and its reasoning procedures. Some of its assumptions and assessments should 

be able to amended and modified if required by the user. This way, the user can accept the level of uncertainty 

measures based on the concluding evidence [17]. 

To ensure that the level of uncertainty is reduced to the minimum, there is need to measure the level of 

uncertainty especially if the source of the data or information been used is inconsistent or ambiguous or the data 

is secondary. In order to make the right decision, there is need to measure and know the level of uncertainty in 

the information or data used for the computation.This is the major reason why uncertainty must be managed. 

This is the focus of this paper. the rest part of the paper is as follows. Section 2 discuss uncertainty in expert 

systems using probabilistic reasoning and Bayes‟ theory. section 

 

II. UNCERTAINTY IN EXPERT SYSTEMS 
There are two basic types of uncertainty: one caused by uncertain or vague information, and the second 

by unknown, imprecise, or stochastic relations between variables that are part of a model of a reality. They are 

referred to as virtual (likelihood) evidence and soft evidence respectively. The likelihood evidence is evidence 

with uncertainty and can be represented as a likelihood ratio. The soft evidence of uncertainties represented as a 

probability distribution of one or more variables. Thus uncertain evidence specifies the probability distribution 

of a variable. Various frameworks are proposed to solve the problem of reasoning with uncertain and vague 

information. These include: 1) Dempster–Shafer theory of evidence, 2) theory of imprecise probabilities, 3) 

possibility theory, 4) fuzzy set theory, 5) Bayesian theory, 6) probability reasoning, etc. [18] [19] 

Virtual (or likelihood) evidence is the type of evidence that reflects the uncertainty one has about a 

reported observation. This evidence type is an evidence with uncertainty and is usually represented as a 

likelihood ratio [20]. The virtual evidence method is used to deal with Bayesian Network belief update when 

one is uncertain about a claim of an event, say Xi = a. Suppose we believe with probability p that this claim is 

actually true due to the occurrence of Xi = a, then the probability that it is not occurring is 1 – p. Virtual 

evidence technique requiresthis uncertainty be given as a likelihood ratio L (Xi) = p + (1 – p), not necessarily the 

specific probabilities. In this technique Bayesian Network was extended by creating a virtual node, U with state 

u representing event where Xi = a is said to have occurred. The virtual node, U has Xi as its only parent and its 

conditional probability table (CPT) satisfies P (U | Xi = a): P (U | Xi a) = L (Xi); after which the belief update 

can be done by instantiating U to u. 

In the soft evidence, uncertainty is represented as a probability of one or more variables with a given 

distribution R(Y), Y  X. This type of evidence is very common. It refers to evidence specified by local 

probability distributions that define constraints on the posterior probability distribution and cannot be changed 

by further information, i.e., these probability distributions are fixed. Each observed local probability distribution 

on a subset of variables is different from the encoded prior probability distributions for those variables 

associated with the Bayesian network [21] [22]. Thus soft evidence is an evidence of uncertainty. Soft evidence 

is a true representation of observation of the distributions of some events which should all be preserved in the 

updated “posterior” distribution. For example, suppose R(Xi) is a soft evidence, even if we are uncertain about 

the specific state Xi is in, we are certain about its distribution. In other words, R(Xi) is a true (and certain) 

observation which must be preserved in the updated joint distribution Q* (i.e., Q*(Xi) = R(Xi)).  

Suppose there is a distribution P(X) and a soft evidence R(Y), Y  X. All possible instantiations of Y, Y(1), Y(2), 

. . . , Y(i) Y, from a mutually exclusive and exhaustive set of events. R(Y) can then be converted to a virtual 

evidence with the likelihood ratio: 

 

L y =       
R y 1  

P y 1  
     ∶        

R y 2  

P y 2  
∶  .  .  . ∶  

R y i  

P y i  
(1) 

 Therefore, propagating the likelihood finding L(X) with Pearl‟s method provides the same results as 

propagating R(Y). Thus the posterior probability of Y after propagating L(Y) using Pearl‟s method is equal to 

R(X). This paper discussed theory of imprecise probabilities and possibility theory using Bayesian theory and 

probability reasoning. 
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 There are four methods of manage uncertainty in expert systems and artificial intelligence [23] [24]. 

They are: 1) default or non-monotonic logic, 2) probability, 3) fuzzy logic, 4) truth-value as evidential support, 

Bayesian theory, and 6) probability reasoning. In default or non-monotonic logic, a reasoning system is said to 

be monotonic if the truthfulness of a conclusion does not change when new information is added to the system. 

Therefore, the set of theorems can only monotonically grow when new axioms are added.Such reasoning is 

characteristic of commonsense reasoning, where default rules are applied when case–specific information is not 

available.nonmonotonic reasoning often require jumping to a conclusion and then retracting that conclusion as 

further information becomes available. All systems of nonmonotonic reasoning are concerned with the issue of 

consistency. Inconsistency is resolved by removing the relevant conclusion(s) derived previously by default 

rules. 

 

III. MEASURING UNCERTAINTY 

In this section, probabilistic reasoning and Bayesian probability theory are used as the tools for the 

measurement. 

 

3.1 Probabilistic Reasoning 

 Probability theory is used to represent and process uncertainty. In probabilistic reasoning, the truth 

value of a proposition is extended from (0, 1) to [0, 1], with binary logic as its special case. This is because the 

uncertainty with highest probability is often preferred even though no conclusion is absolutely true. Under 

certain assumption, probability theory gives the optimum solutions. Most often, the Boolean connectives to 

probability functions is used as: 

 

Negation: P ( A) = 1 – P (A) 
 

Conjunction: P (A  B) = P (A)  P (B) if A and  

 

B are independent of each other. 

 

Disjunction: P (A  B) = P (A) + P (B) if A and  

 

B never happens at the same time. 

 

Furthermore, the conditional probability of B given A is P (B|A) = P (B  A) / P (A), for which Bayes‟ Theorem 

is derived, and it is often used to update a system‟s belief according to new information: 

 

P B A =   
P A|B ∗P B 

P A 
    (2)  

3.2Bayesian Probability Theory 

Bayesian probability theory provides a mathematical framework for performing inference, or reasoning using 

probability [25]. The foundations of Bayesian probability theory were laid down some two centuries ago by 

people such as Bernoulli, Bayes, and Laplace, but it has been very controversial by modern statistician. 

However, the last few decades have witnessed what is referred to as “Bayesian revolution,” and Bayesian 

probability theory is now commonly used in many scientific disciplines including expert systems, machine 

learning, and AI in general. It is mostly used to determine the relative validity of hypothesis in the face of noisy, 

sparse, or uncertain data, or to adjust the parameters of a specific model. Therefore, Bayes‟ theorem plays an 

increasingly prominent role in statistical applications but remain controversial among statisticians. Bayes‟ 

theorem is thus an algorithm for combining prior experience with current evidence [26] [27]. The Bayes‟ 

theorem is stated thus: 

 

3.2.1 Definition (Bayes’ Theorem): 

If P(A) is the probability of event A and P(B) is the probability of B, then the conditional probability of A given 

B is P(A/B) and the conditional probability of B given A is P(B/A).Thus the theorem is stated mathematically 

as: 

 

P  
A

B
           =            

P  
B

A
 P A 

P B 
(3) 

P B      =           
Σ

A
P B/A  
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=           
Σ

A
P B/A P A (4) 

 

 

Using probability to quantify uncertainty in Bayesian inference, we have: 

 

 

where, 
 

P ∅ | X , X = Posterior, 

P X  | ∅ = Likelihood function, and  

P ∅ | X  = Prior 

 

Hence, P A/B =    
P A, B 

P B 
   =      

P B/A 

P B 
 PA =

P B/A P A 

P B/A P A + P B/A P A 
(6) 

 

 The posterior probability of an uncertain proposition is the conditional probability that is assigned after 

the relevant evidence or background is taken into account. “Posterior” in this context means after taking into 

account the relevant evidence related to the particular case being examined [28] [29]. The posterior probability 

is the probability of the parameters given evidence X: P (|X). This is in contrast to the likelihood function, 

which is the probability of the evidence given the parameters: P (X|). The two are related as follows: 

Suppose we have a prior belief that the probability distribution function is P () and observations with the 

likelihood P (x|), then the posterior probability is obtained as: 

 

P ∅|x =  
P x|∅ P ∅ 

P x 
.                                                                                                                  (7) 

 

Thus the posterior probability can be written in the form: 

 

Posterior probability is directly propositional to the likelihood function multiplied by the prior probability. That 

is: 

 

Posterior probability  likelihood function X Prior knowledge. This is the same as the formula stated earlier in 

(2).The “prior” information we need 

 

P B|A =
P A|B P B 

P A 
(8) 

 

 Thus Bayes‟ theorem can be regarded as a rule to update an initial probability p (A), also called the 

prior probability, into a revised probability p (A|B), called the posterior probability that takes into account the 

updated knowledge currently available. As an example, consider a married woman who believed she that she 

may be pregnant after a single sexual intercourse, but she is unsure [30] [31] [32] Assuming she takes a 

pregnancy test which is known to be 80% accurate, i.e., the test gives positive result to positive case 90% of the 

time and the test produces a positive result. Thus she would like to know the probability she is pregnant, given a 

positive test (p (preg | test +)). However, what she knows is the probability of obtaining a positive test result if 

she is pregnant (p (test + | preg)). In another similar example, suppose a young man conducts a test on prostate 

cancer and that this test is 80% accurate. Again, the individual would like to know the probability that he has 

prostate cancer, given the positive test, but the information available is simply the probability of testing positive 

if he has prostate cancer, coupled with the knowledge that he tested positive [33]. Therefore, Bayes‟ Theorem 

provides a way to reverse conditional probabilities and, hence provides a way to answer these questions. 

 

3.2.2Proof of Bayes’ Theorem 
 
 

Theorem: P B|A =
P A|B  P B 

P A 
 

Proof  

𝑃 ∅ | 𝑋 , 𝑋     ∝    𝑃 𝑋  | ∅      𝑃 ∅ | 𝑋                                                                                                               (5) 
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As noted earlier, p(A, B) = p(A|B) p(B) and p(B, A) = p(B|A) p(A). Form the foregoing, one can see that p(A, 

B) = p(B, A). Thus 
 

p(B|A)/p(A) = p(A|B) p(B)   (9) 

 

Divide both sides by p(A) leaves us with equation (6). The same is true for equation (2.1) if we divide both sides 

by P(A). 

 The left-hand-side (L.H.S) of equation 9 is the conditional probability (P(B|A)) which we are 

interested. However, the righthand side (R.H.S) of equation 9 has three components: the conditional probability, 

p(A|B), probability B, (p(B)), and probability A, (p(A)). P(A|B) is the conditional probability we are interested 

in. P(B) is the unconditional (marginal) probability of the event of interest. Finally, p(A) is the marginal 

probability of event A. This quantity is computed as the sum of the conditional probability of A under all 

possible events Bi in the sample space: Either the woman is pregnant or she is not. 

This is stated mathematically for a discrete sample space as follows: 

 

𝑃 𝐴 =  𝑃 𝐴|𝐵𝑖 

𝐵𝑖∈𝑆𝐵

𝑝 𝐵𝑖 (10) 

 

3.3 Combining Rules in Bayesian Probability Theory 

Two types of rules are often used in Bayesian probability Theory. They are: 1) sum rule and 2) product rule. The 

sum rule states that: 

 

P(A|B) + P(A|B) = 1          (11)  

 

while the product rule is as follows: 

 

P(AB|C) = P(A|C) P(B|AC)         (12) 

 

Here, p(A|B) denotes the probability of A on the condition that B is true. These rules correspond to the negation 

and conjunction operations of Boolean algebra. The disjunction does not need a separate rule because it can be 

derived from negation and conjunction: 

 

A + B = (A  B) 

 

In fact, only one operation would suffice since other operations can be derived from either NAND or NOR 

operation alone. The NAND operation, for example, yields the following rule, starting from which every other 

rule of Bayesian probability theory can be derived: 

 

P(A + B|C) + P(A|C) P(B|AC) = 1        (13) 

 

From equation 12, we know that: 

 

P(AB|C) = P(A|C) P(B|AC) = P(B|C) P(A|BC)        (14) 

and from equation 9, 

 

P(A|B) + P(A|B) = 1          (15) 

 

Equation 12 is called the product rule and equation 13 is called the sum rule. 

 

Therefore, there is no loss of generality. Thus to determine the plausibility any logic function f (A1, . . . , An) 

from those of {A1, . . . , An} using equations 14 and 15, we need formulae for the plausibility of the conjunction 

AB and the negation  A. However, since: 

 

(A|C) > (C|B)          (16) 

 

The conjunction and negation are adequate set of operations from which all logic functions can be constructed. 

Therefore, for our basic rules is possible through repeated applications of the product rule and the sum rule in 

order to arrive at the plausibility of any proposition in the Boolean algebra generated by {A1, . . . , An}.In order 
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to verify this, we need to find a formula for the logical sum A + B. This we can do by applying the product rule 

and sum rule repeatedly as follows: 

 

P(A+B) C = 1 – P(A  B|C) = 1 – P (A|C) P (B|AC) 

= 1 – P ( A|C) [1 – P (B|AC)] = P(A|C) + P(AB|C) 

 = P(A|C) + P(B|C) P(A|BC) = P(A|C) + P(B|C) [1 – P(A|BC)]            (17) 

 

and finally, 

 

P(A+B|C) = P(A|C) + P(B|C) – P(AB|C)        (18) 

 

This generalized sum rule is one of the most useful rule in applications. Thus the primitive sum rule (15) is a 

special case of (18), with the choice B =  A. 

  

Suppose we consider our earlier example on the pregnant woman with 80% chance of being pregnant. However, 

there is always the common error of misclassification such as false – positive results give 30%. That is, a 

woman will test positive 30% of the time when she is not even pregnant. Thus we have two possible outcomes 

or events Bi : B1 = preg and B2 = not preg. In addition, given the accuracy of 80% and false – positive rate of 

30%, the conditional probabilities of obtaining a positive test in these two events are: P(test + | preg) = 0.8 and 

P(test + | not preg) = 0.3. Combining theseinformation with some “prior” information on the probability of 

becoming pregnant from a single sexual intercourse, Bayes‟ theorem provides a prescription for determining the 

probability of interest.  

   

Since our marginal probability of being pregnant is P(B) = P(preg), this is our “prior” information apart from the 

fact that we know that the woman only had sexual intercourse once.This information is said to be prior because 

it is relevant information that exists prior to the test. Suppose we know from previous research that the 

probability of conception for any single sexual encounter is approximately 10%, Then based on these 

information, we can compute p(B|A) P(preg | test +) as: 

 

P preg test +         =
P test + |preg P preg 

P test + |preg P preg + P test + | notpreg P notpreg 
 

 

Substituting for these parameters, we have: 

 

P preg test +         =
 0.8  0.1 

 0.8  0.1 +  0.3  0.9 
 

 

=
0.08

 0.08 +  0.27 
=

0.08

0.35
= 0.2286 

 

= 0.229 

  

Therefore, from our computation, the probability that the woman is pregnant, given the positive test is 0.229. 

This probability is usually referred to as “posterior” probability because it is the estimated probability arrived at 

using the “prior” information and other valuable data. This probability is very small due to some limitations 

before the test. However, the test can be repeated a number of times until the result becomes convincing. Using 

the “updated” probability of being pregnant (p = 0.229) as our new p(B), i.e.; the prior probability for being 

pregnant has now been updated to reflect the result of the test. Supposing the woman repeats the test and again 

observes a positive result and her new “posterior probability” of being pregnant is: 

 

P preg test +         =
 0.8  0.229 

 0.8  0.229 +  0.3  0.771 
 

 

=
0.1832

0.1832 + 0.2313
=

0.1832

0.4145
 

 

= 0.4412 
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This result is still not very convincing evidence that she is prepregnant. However, if she repeats the test again 

and finds a positive result, her probability increases to: 

 

P preg test +         =
 0.8  0.4412 

 0.8  0.4412 +  0.3  0.5588 
 

 

=
0.35296

0.35296 + 0.16764
=

0.35296

0.5206
 

= 0.678 

 

This result though good is not very convincing. The women need to perform further test(s). Supposing she 

repeat the test again as test 4. Then the Bayes‟ probability result or outcome will be as follows: 

 

P preg test +         =
 0.8  0.678 

 0.8  0.678 +  0.3  0.322 
 

 

=
0.5424

0.5424 + 0.0966
=

0.5424

0.639
 

 

= 0.849 
 

Although, this result is better, however, she can still perform further test(s). 
  

However, this process of repeating the test and recomputing the probability of interest is of concern to 

statisticians. Basically, the Bayesian probability begin with some prior probability for some event, and we then 

continue to update this prior probability with new information to obtain a posterior probability is the used as a 

new prior probability in the next computation and the process is repeated continuously. From Bayesian and 

statistician point of view, this is a good strategy for conducting scientific research, i.e., by continually gathering 

data to evaluate a particular hypothesis because previous research gives us a priori information about an 

hypotheses and a due about research direction. 

 

IV. CONCLUSION 
 This paper discussed managing uncertainty in artificial intelligence and expert systems using Bayesian 

Theory and Probability reasoning. In AI and expert systems, uncertainty is measured by using relative 

frequencies or by combining various statistical models based on data and information collected from various 

sources. Some of these measures are objective in nature while others may be from domain experts. All these 

measures all these measures ae usually combined to make inference and decisions. However, for users to be 

convinced about an expert system especially when the user requested that the model and its conclusion be made 

explicit, there is need for the human expert and those who built the expert system to provide documentation and 

detailed explanation about how the expert system was built and how it works. That is, the expert system should 

be able to justify its assessments of the uncertainty and its reasoning procedures. Some of its assumptions and 

assessments should be able to amended and modified if required by the user. This way, the user can accept the 

level of uncertainty measures based on the concluding evidence. 
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