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ABSTRACT:Physical properties of pure components of oil such as critical compressibility, critical volume, 

critical temperature, critical pressure, molecular weight, specific gravity and standard boiling point are very 

important in compositional reservoir simulation. Perfectly, these properties should be obtained from actual 

laboratory measurements on samples collected from the bottom of the wellbore or at the surface. Quite often, 

however, these measurements are either not available, or very costly to obtain. For these reasons, there is a 

need for a quick and reliable method for predicting the physical properties of these components.   

This study presents both back propagation network and fuzzy logic techniques for predicting critical 

compressibility, critical temperature, and critical pressure. The models were developed using 120 data sets 

collected from different published sources. These data were divided into two groups: the first was used to train 

the Artificial Intelligence models and the second was used to test the models to evaluate their accuracy and 

trend stability. 

 Using the average percent relative error, average absolute percent relative error, minimum and maximum 

absolute percent relative error, root mean square error, and the correlation coefficient as criteria to evaluate 

the performance and accuracy of the new models. The present models provide predictions of the critical 

compressibility, critical temperature, and critical pressure with correlation coefficient of one for all models. 

KEYWORDS:Critical compressibility, critical temperature, and critical pressure, backpropagation network, 

fuzzy logic model. 
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I. INTRODUCTION 
Recently, Artificial Intelligence techniques such as artificial neural network, fuzzy logic technique, and 

functional networks were used comprehensively in most of petroleum engineering applications such as in 

drilling engineering, reservoir engineering production engineering, petrophysics, rock mechanics and 

exploration [1]-[8]. 

Physical properties of pure oil reservoir componentsare very important in compositional reservoir 

simulation. A compositional reservoir simulator is used to model the complex compositional changes and phase 

behavior that occur in retrograde gas-condensate reservoirs during production. The compositional model gives 

increased accuracy by utilizing a more realistic description of the fluid. The compositional simulation models 

assume that reservoir fluid properties are dependent not only upon the reservoir temperature and pressure but 

also on the composition of the reservoir fluid which changes during production, either by depletion or by gas 

injection[9]-[12]. 

Totally, these properties should be obtained from actual laboratory measurements such as Constant 

Composition Expansion (CCE) and Constant Volume Depletion (CVD) on samples collected from the bottom of 

the wellbore or at the surface.   Hence, engineers have to use empirically derived correlations such as an 

equation of state, linear, non-linear, multiple regressionscorrelations, [13]-[18]. So far, researchers did not 

utilize Artificial Intelligence for predicting these very important the critical properties of pure oil reservoir 

components. 

This study presents both back propagation network (BPN) and fuzzy logic (FL) techniques for 

predicting the very important the critical properties of pure oil reservoir components include critical 

compressibility (Zc), critical temperature (Tc), and critical pressure (Pc) using 120 data sets collected from 

different crude samples. These data were divided into two subsets: the first one (84 sets) was used to train the 
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Artificial Intelligence models, the second group (36 sets) was used to test the models to evaluate their accuracy 

and trend stability. 

 

II. ARTIFICIAL INTELLIGENCE OVERVIEW 
Artificial Neural Network  

An ANN model is a computer model that attempts to mimic simple biological learning processes and 

simulate specific functions based on the working of the human nervous system. It is an adaptive, parallel 

information processing system, which can develop associations, transformations or mappings between objects or 

data. The fundamental building block for neural networks is the single-input neuron as shown in Fig. 1. In 

addition, the simple neuron can be extended to handle inputs that are vectors. A neuron with a single R-element 

input vector as shown in Fig. 2. 

 

 

 

 

 

 

 

Three distinct functional operations that take place in this example neuron. First, the scalar input (P) is 

multiplied by the scalar weight (W) to form the product (WP), again (a) scalar. Second, the weighted input (WP) 

is added to the scalar bias (b) to form the net input n.  In this case, the bias can be viewed as shifting the function 

(f) to the left by an amount b. The bias is much like a weight, except that it has a constant input of 1. Finally, the 

net input is passed through the transfer function (f), which produces the scalar output (a). The names given to 

these three functions are: the weight function, the net input function, and the transfer function. Many transfer 

functions are included in the Neural Network Toolbox software. Two of the most commonly used functions are 

shown below. Log-sigmoid transfer function generates outputs between 0 and 1 as the neuron’s net input goes 

from negative to positive infinity as shown in Fig. 3. While linear output neurons are used for function fitting 

problems. The linear transfer function purlin is shown in Fig. 4. 

 

 

 

 

 

 

Back propagation network (BPN) often has one or more hidden layers of sigmoid neurons followed by 

an output layer of linear neurons. Multiple layers of neurons with nonlinear transfer functions allow the network 

to learn nonlinear relationships between input and output vectors. The linear output layer is most often used for 

function fitting (or nonlinear regression) problems. Fig. 5 shows back propagation network with sigmoid and 

linear transfer functions.    

Fig. 1. Single-input neuron [19] Fig. 2. Vectors-inputs neuron [19] 

Fig. 3. Log-sigmoid transfer function [19] Fig. 4. linear transfer function[19] 
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Fig. 5. Architecture of back propagation network [19] 

Fuzzy Logic Technique   

Fuzzy logic model or FL-model has two different meanings. In a narrow sense, fuzzy logic is a logical 

system, which is an extension of multivalued logic. However, in a wider sense fuzzy logic (FL) is almost 

synonymous with the theory of fuzzy sets, a theory that relates to classes of objects with unsharp boundaries in 

which membership is a matter of degree. The point of fuzzy logic is to map an input space to an output space, 

and the primary mechanism for doing this is a list of if-then statements called rules. All rules are evaluated in 

parallel, and the order of the rules is unimportant. The rules themselves are useful because they refer to variables 

and the adjectives that describe those variables. You have to define your system like rule base, membership 

functions and their number and shape manually. A membership function (MF) is a curve that defines how each 

point in the input space is mapped to a membership value (or degree of membership) between 0 and 1. The input 

space is sometimes referred to as the universe of discourse, a fancy name for a simple concept. There are 

different kinds of membership functions for example, triangular membership function(trimf), trapezoidal 

membership function(trapmf), Gaussian membership function( gaussmf and gauss2mf),and generalized bell 

membership function(gbellmf) as shown in Fig. 6 and Fig. 7 . 

 

 

 

 

 

 

 

III. PHYSICAL PROPERTIES OVERVIEW 
In this study, critical compressibility (Zc),   critical temperature (Tc), and critical pressure (Pc) were 

predicted. These correlations are basically based on the following assumption:-  

1- That critical compressibility (Zc) is a strong function of the critical volume (Vc), critical temperature (Tc), 

critical pressure (Pc),and molecular weight (Mw) [17]. 

Zc = f (Vc, Tc, Pc, Mw) 

Zc =
Vc ∗ Pc ∗ Mw

10.732 ∗ TC

 

2- The critical temperature (Tc) is a strong function of the critical volume (Vc), critical compressibility (Zc), 

critical pressure (Pc), and molecular weight (Mw) [17]. 

Tc = f (Vc, Zc, Pc, Mw) 

Tc =
Vc ∗ Pc ∗ Mw

10.732 ∗ ZC

 

Fig. 6. Triangular and trapezoidal membership 

functions [19] 

Fig. 7. Gaussian membership functions [19] 
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 3- The critical pressure (Pc) is a strong function of the critical volume (Vc), critical compressibility (Zc), 

critical temperature (Tc), and molecular weight (Mw) [17]. 

Pc = f (Vc, Zc, Tc, Mw) 

Pc =
10.732 ∗ Tc ∗ Zc

Vc ∗ Mw

 

IV. DATA ACQUISITION AND ANALYSIS 
A total of 120 data sets used for this study were collected from published sources as follows: 92 from 

Naji [17]and 28 Orangi [18]. Each data set contains critical compressibility (Zc), critical volume (Vc), critical 

temperature (Tc), critical pressure (Pc), and molecular weight (Mw) as shown in Table 1. Out of the 120 data 

points, 84 were used to train the model and 36 to test the model to evaluate its accuracy and generalization 

capability.  

  

Table 1- Statistical descriptions of the training data 

  Min Max Mean Range Mid-Ran. Variation St. Dev. Skew. 

Zc 0.1783 0.288 0.244 0.11 0.233 0.001 0.027 -0.691 

 Tc 227.16 1790 1336 1563 1009 155268 394 -0.0958 

Pc 73.2 1071.3 257 998 572 38692 197 2 

Vc 0.0626 26.755 2 27 13 15 4 4 

MW 16.04 703.36 309 687 360 37624 194 0.176 

 

Development of Artificial Intelligence (AI) Models 

In this study, back propagation network (BPN) model was used to predict the critical compressibility 

(Zc), critical temperature (Tc), and critical pressure (Pc).  

 

Critical Compressibility (Zc) Model  

For the critical compressibility (Zc) model, we used (BPN) with structure 4-10-5-1. The first layer 

consists of four neurons representing the input values of the critical volume (Vc), critical temperature (Tc), 

critical pressure (Pc), and molecular weight (Mw). The second (hidden) layer consists of ten neurons and the 

third (hidden) layer consists of five neurons. The fourth layer contains one neuron representing the output 

predicted value of the critical compressibility (Zc). 

 

Critical Temperature (Tc) Model 

Critical Temperature (Tc) model was developed using (BPN) with structure 4- 11 -1. The first layer 

consists of four neurons representing the input values of the critical volume (Vc), critical compressibility (Zc), 

critical pressure (Pc), and molecular weight (Mw). The second (hidden) layer consists of eleven neurons. The 

third layer contains one neuron representing the output predicted value of the critical temperature (Tc) 

 

Critical Pressure (Pc) Model 

Critical Pressure (Pc) Model was predicted using (BPN) with structure 4-10-5-1. The first layer 

consists of four neurons representing the input values of the critical volume (Vc), critical compressibility (Zc), 

critical temperature (Tc), and molecular weight (Mw). The second (hidden) layer consists of ten neurons and the 

third (hidden) layer consists of five neurons. The fourth layer contains one neuron representing the output 

predicted value of the critical pressure (Pc). For all the above models tangent sigmoid transfer function and 

linear transfer function training optimization were used.   

For the fuzzy logic (FL) model we used Subtractive Clustering (SC) and Grid Partitioning techniques. For 

Clustering a radius of 0.1 was selected. For grid partitioning, a triangular (trimf) membership function was used 

after checking the model for over-fitting for all the above models.  

 

Evaluation Criteria 

To compare the performance and accuracy of the new model, statistical error analysis is performed. 

The statistical parameters used for comparison are: minimum and maximum absolute percent error, average 

percent relative error, average absolute percent relative error, root mean square and the correlation coefficient. 

Equations for those parameters are given below: 
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1. Average Percent Relative Error: 

It is the measure of the relative deviation from the experimental data, defined by: 

𝐸𝑎 =
1

𝑛
∗   𝐸𝑖 

𝑁

𝑖

 

Where Ei is the relative deviation of an estimated value from an experimental value 

𝐸𝑖= 
𝑉𝑒𝑥𝑝 −𝑉𝑒𝑠𝑡

𝑉𝑒𝑥𝑝
 ∗ 100 , 𝑖 = 1,2,3 … ..n 

2. Average Absolute Percent Relative Error: 

It measures the relative absolute deviation from the experimental values, defined by: 

𝐸𝑎𝑎 =
1

𝑛
∗   𝐸𝑖 

𝑛

𝑖

 

1- Maximum and minimum and absolute percent relative error 

To define the range of error for each correlation, the calculated absolute percent relative error values are 

scanned to determine the maximum and minimum values. They are defined by: 

𝐸𝑚𝑖𝑛 =

𝑛
𝑚𝑎𝑥
𝑖 = 1

 𝐸𝑖  

𝐸𝑚𝑖𝑛 =

𝑛
𝑚𝑖𝑛
𝑖 = 1

 𝐸𝑖  

5. The Correlation coefficient: 

It represents the degree of success in reducing the standard deviation by regression analysis, defined by:  

R= 1 −   𝑉𝑒𝑥𝑝 − 𝑉𝑒𝑠𝑡  /   𝑉𝑒𝑥𝑝 − 𝑉  𝑛
𝑖=1

𝑛
𝑖=1  

𝑉 =
1

𝑛
∗   𝑉𝑒𝑥𝑝  

𝑛

𝑖

 

 

V. RESULTS AND DISCUSSION 
After training the neural networks, the models become ready for testing and evaluation. To perform 

this, the last data group (37 data sets), which was not seen by the neural network during training, was used. 

Table 2 shows the comparison of evaluation criteria such as maximum absolute percent relative error, 

minimum absolute percent relative error, average absolute percent relative error, average percent relative error, 

standard deviation, and correlation coefficient, respectively of the results for critical compressibility (Zc),   

critical temperature (Tc), and critical pressure (Pc) correlations, respectively by using back propagation 

network. 

Fig. 8 and 9 show the plots of the predicted versus experimental critical compressibility (Zc) values 

correlations for training and testing, respectively using back propagation network (BPN). The predicted versus 

experimental critical compressibility values correlations for training and testing, respectively using the fuzzy 

logic (FL) model were considered as shown in Fig. 10 and 11.    

Fig.  12 and 13 illustrate the plots of the measured versus estimated critical temperature (Tc) values 

correlations for training and testing, respectively using back propagation network (BPN). While Fig. 14 and15 

demonstrate the same for critical temperature, values predicted by fuzzy logic (FL) model.  

Fig. 16 and17 demonstrate the same for critical pressure (Pc) values. At the same time as Fig. 18 and 

19, explains the same for critical pressure values predicted by fuzzy logic (FL) model.  

As can be observed from Table2,  the (FL) proposed model achieved the lowest maximum error(0.0296 

%), the lowest absolute percent relative error (0.0052%), and the lowest standard deviation(0.0086%) and 

showed high accuracy in predicting the critical compressibility (Zc) values (correlation coefficient is 1).  

The Same observation can be obtained from same Table  for critical temperature (Tc) correlations, the 

(FL) predicted model also achieved the lowest maximum error(0.0296 %), the lowest absolute percent relative 

error (0.0052%), and the lowest standard deviation(0.0086%) and illustrated high accuracy in predicting the 

critical temperature (Tc) values (correlation coefficient is 1).  

For critical pressure (Pc) modles as can be concluded from the results shown in Table1, the lowest 

maximum error(0.0934%), the lowest absolute percent relative error (0.0176%), and the lowest standard 

deviation(0.0316%) and showed high accuracy in predicting the critical temperature (Tc) values (correlation 

coefficient is 1). 
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Table2- Statistical analysis of the results critical compressibility (Zc),  critical temperature (Tc), and 

critical pressure (Pc) 

 

 

EMax EMin Eaa Ea Estd R 

Zc 
BPN 

3.0443 0.0097 0.6622 0.0812 0.8788 0.9973 

Zc 
FL 

0.0296 1.13E-005 0.0052 0.0012 0.0086 1 

Tc 
BPN 

2.6410 0.0034 0.2550 -0.0313 0.4964 0.9999 

Tc 
FL 

0.0296 1.13E-005 0.0052 0.0012 0.0086 1 

Pc 
BPN 

4.6470 0.0003 0.4102 0.0984 0.7432 0.9999 

Pc 
FL 

0.0934 3.10E-006 0.0176 4.79E-004 0.0316 1 

 

 
Fig. 8. Critical compressibility (Zc) model for training data by using (BPN) 

 

 
Fig. 9. Critical compressibility (Zc) model for testing data by using (BPN) 
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Fig. 10. Critical compressibility (Zc) model for training data by using (FL) 

 

 
Fig. 11. Critical compressibility (Zc) model for testing data by using (FL) 

 

 
Fig. 12. Critical temperature (Tc) model for training data by using (BPN) 

 

 
Fig. 13. Critical temperature (Tc) model for testing data by using (BPN) 
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Fig. 14. Critical temperature (Tc) model for training data by using (FL) 

 

 
Fig. 15. Critical temperature (Tc) model for testing data by using (FL) 

 

 
Fig. 16. Critical pressure (Pc) model for training data by using (BPN) 

 

 
Fig. 17. Critical pressure (Pc) model for testing data by using (BPN) 
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Fig. 18. Critical pressure (Pc) model for training data by using (FL) 

 

 
Fig. 19. Critical pressure (Pc) model for testing data by using (FL) 

 

VI. CONCLUSIONS 
Based on the analysis of the results obtained in this study, the following conclusions can be made:- 

In this study, both back propagation network (BPN) and fuzzy logic (FL) models were used to predict 

critical compressibility (Zc), critical temperature (Tc), and critical pressure (Pc). 

For gas critical compressibility (Zc), critical temperature (Tc), and critical pressure (Pc) models, this is 

the first an attempt that was made to obtain these models using back propagation network (BPN). 

The new fuzzy logic (FL) models outperform all the artificial neural network models.   

The results show that the developed (FL) critical compressibility (Zc) model provides better predictions 

and higher accuracy. The present model provides prediction of the critical compressibility (Zc) with correlation 

coefficient of 1. 

The developed developed (FL) critical temperature (Tc) model provides prediction of the critical 

temperature (Tc) with correlation coefficient of 1. 

The critical pressure (Pc) model provides prediction of the critical pressure (Pc) with correlation 

coefficient of 1. 

 

Nomenclature 

Zc = Critical compressibility   

Vc = Critical volume  

Tc = Critical temperature   

Pc = Critical pressure  

Mw = Molecular weight  

γg=  Specific gravity  

Tb =   Normal boiling point  

CCE = Constant Composition Expansion 

CVD = Constant Volume Depletion   

Ea = Average percent relative error 

Eaa = Average absolute percent relative error 

EMax = Maximum absolute percent relative error 

EMin = Minimum absolute percent relative error 

Estd = Standard deviation error 
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R = Correlation coefficient 

BPN = Back propagation network  

FL = Fuzzy logic  

Vexp = Experiment value 

Vest = Measured value  
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