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ABSTRACT : This paper investigates the formulation of a regional model predictive controller (MPC) in the 

framework of hybrid systems. This MPC is designed using a collection of regional models defined with PWA 

(Piecewise Affine) formalism according to the region in which the output variable is in the bifurcation diagram. 

The results for the regional MPC are compared to those obtained with MPCs based on other model descriptions, 

a fully nonlinear formulation, and a locally linearized formulation. To illustrate the performance of the controller, 

the temperature control of a continuous stirred tank reactor is addressed. The results indicate a satisfactory 

performance and suggest an efficient alternative to the control of nonlinear systems of chemical processes that 

exhibit multiple steady states or for which several regional models are available. 
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I. INTRODUCTION 
The hybrid system framework is used to describe systems whose behavior is described by a continuous 

dynamics associated with discrete events (logical) usually from the presence of on/off valves, thermostats, 

switches, or a level of decision involving logical if-then-else. The simulation of a hybrid system is not just 

combination of continuous and discrete aspects of a system. To enable the appropriate behavioral analysis of a 

system, it is necessary for the simulation to consider the two predominant behaviors of the system and their 

dynamic interaction with each other [1]. 

This interaction requires consistent responses in the simulation of the system behavior and appropriate 

control strategies for the sophisticated and complex dynamics of a hybrid system. In process control, a hybrid 

system can also be characterized by a digital control system (controller in discrete time), described by difference 

equations, which controls the continuous process described by differential equations or continuous systems with 

embedded digital modules [2].  In most studies, the control is based only on the continuous dynamics, neglecting 

the presence of these elements and their influence on the system [3].  

Model Predictive Control (MPC) has peculiar features that make it as one of the most promising 

controllers for handling hybrid systems, such as a satisfactory adaptation to multi-variable systems, working with 

coupling or significant interactions between the variables, and e effective control systems for both linear and 

nonlinear systems that exhibit complex traits like instability. The intuitive approach to the problem of control by 

the MPC controller using a model to estimate the future behavior of the system is an e effective alternative for the 

control of hybrid systems [4]. 

Several studies have applied hybrid formalisms to represent the dynamic behavior of nonlinear systems. 

Rivotti and Pistilopoulos [5]presents applications of hybrid systems theory and MPC. The proposal shows the 

results of this method applied in a numerical example to the optimal control of a piecewise affine system with a 

linear cost function and achieves satisfactory results. Frick, Domahidi and Morari [6]use a standard branch-and-
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bound approach with a fast interior point solver for multistage problems to solve an embedded optimization 

problem for mixed logical dynamical systems with a significant number of logical variables.  

In this paper, PWA (Piecewise Affine) formulation is determined as the type of hybrid formalism to be 

used in developing the model for the system to be simulated and controlled due to emphasis given to the idea of 

introducing qualitative knowledge in process using logical prepositions. PWA formalism was based on the 

bifurcation observed in the behavior of controlled variable. 

 

1. LOCAL LINEAR MODEL TREE AND MULTIMODEL CONTROL 

Modeling is a useful tool for analysis and control of systems. Since the quality of the model typically 

determines an upper bounded on quality of the final problem solution, it is necessary for the modeling is developed 

with appropriate techniques in order to adequately describe system characteristics, such as typical behavior from 

nonlinearity. 

Nonlinear models are the foundation for simulation, prediction and model based control in general cases. 

Developing such models, in most cases, is ex-pensive, time-consuming and involves many unknown parameters 

and heuristics [7]. Usually, chemical processes are characterized by complex nonlinear dynamics, mainly due to 

the chemical kinetics and reaction diffusion, biological and chemical waves [8]. 

Changes in some control parameters might lead to instability and might make the control task even more 

di cult. At first, bifurcation analysis and control theory were developed independently, although if the choice of 

the models chosen carefully and there is a good understanding of the dynamics of the chemical process, there can 

be guaranteed a more effective control system [9, 10].  

Several authors have addressed the relation between controllability and stabilizability of nonlinear 

control systems. Abed and Fu [11] studied the local bifurcation control problem and its stabilization, defining a 

sufficient condition to guarantee that a nonlinear critical system can be stabilized. Intense exploration of the theory 

of bifurcation of nonlinear systems in engineering and science allows not only suppressing chaos but also 

exploiting its potential applications in control design. 

Seeking a simpler approach to describe the complexity of the behavior of a nonlinear system to be used 

by MPC, bifurcations behavior and Local Linear Model Tree (LOLIMOT) theory and can be allies in the 

development of control systems for nonlinear systems for chemical process. LOLIMOT is an approximation for 

nonlinear systems with piecewise linear models. A tree-construction algorithm that partitions the input space by 

axis-orthogonal splits with an upper level loop that determines the structure with the linear local models are valid 

and a lower level loop for estimate parameters[12]. 

This approach is often used for fuzzy systems ascan be seen in the research developed for Mola et al.[13]. 

An identification of dynamical neurofuzzy system is proposed benefits from both LOLIMOT and the subspace 

identification method of N4SID to optimize the state space parameters tested on a flexible robot arm.  

In Sharbafi et al. [14], LOLIMOT algorithm is used to identify the omnidirectional robotSs dynamic 

model.  That system is subjected to a intelligent controller based on brain emotional learning algorithm. Other 

applications are presented in Rezaie et al. [15] and Pedram et al.[16].  

The complexity of the processes in various fields results in the necessity of practical approaches to 

control tasks [17]. A powerful tool for that goal is Multimodel controller based in a model approach for nonlinear 

plant is described by   combination of local linear models, each of which is valid in a particular operating region 

[18]. 

Those models could be identified around given operating points using classical method. A local 

controllers are tuned to each region and next the control actions of these controllers are combined formed a global 

controller to be implemented on the nonlinear plant [19].  

Some studies have explored Multimodel controller in systems as generic air traffic control tracking [20], 

hydraulic turbine generating systems [19] and sensorless photovoltaic system [21]. The results show that type of 

control provides a good performance. 

 

2. PIECEWISE AFFINE (PWA) HYBRID FORMALISM 

The term hybrid system was primarily used by Witsenhausen [22]to describe the combination of both 

dynamics suggesting a linear model with states and inputs assuming discrete and continuous values. Very many 

formalisms have been developed to describe this type of system 

A simplified definition of this type of system is used to characterize systems that have various modes of 

operation. Each mode of operation in the continuous dynamic process consists of  diifferential equations or 
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difference equations, while each mode switching operation occurs due to the occurrence of particular events 

characterizing the discrete dynamics of the system [4]. 

Discrete dynamics generally characterize the phase transitions of the system, in which the description is 

made more natural by different sets of algebraic and differential equations and the switching conditions which 

govern the transition from one to the other description. In the simplest cases, it is sufficient to describe the 

boundaries where the dynamics change, depending on the state variables of the real values of the continuous 

system [23]. 

PWA systems are defined by splitting the state and input spaces into polyhedral regions Ωi[24]. Each region is 

associated with state update equations, as described in Equations 1 and 2 [25]: 

𝐱c(k + 1) = 𝐀i𝐱c(k) + 𝐁i𝐮c(k) + 𝐠i, [
𝐱c(k)

𝐮c(k)
] ∈ Ωi                         (1)                                                                                       

𝐲c(k) = 𝐂i𝐱c(k) + 𝐃i𝐮c(k) + 𝐡i                         (2)                                                                                                     

in which 𝐀i
n×n , 𝐁i

n×m, 𝐠i
n×1, and 𝐡i

n×1  are constants and have the appropriate dimensions. x, u and y are 

continuous (c) and binary (l) states, inputs and outputs, respectively, defined by Equations (3) to (5).  

𝐱(k) = [
𝐱c(k)

𝐱l(k)
] , 𝐱c(k) ∈  ℝ

nc , 𝐱l(k) ∈ {0,1}
nl , n ≜ nc + nl                                   (3) 

𝐮(k) = [
𝐮c(k)

𝐮l(k)
] , 𝐮c(k) ∈  ℝ

mc , 𝐮l(k) ∈ {0,1}
ml , m ≜ mc +ml                                  (4) 

𝐲(k) = [
𝐲c(k)

𝐲l(k)
] , 𝐲c(k) ∈  ℝ

pc , 𝐲l(k) ∈ {0,1}
pl , p ≜ pc + pl                                   (5) 

 Such systems are linear representations used to model nonlinear processes with arbitrary occurrences 

over time, which makes them display the characteristics of a hybrid system. Although this formalism is a 

composition of linear dynamic systems invariant in time, its structural properties, such as stability, observability, 

and controllability, are complex, with the typical behavior of non-linear systems [23, 26]. 

 In the last decade, there have been developed several identification methods for PWA systems from 

nonlinear systems with large data sets, mainly involving optimization concepts [23]. Given an MLD model, it is 

always possible to find an equivalent PWA model [3], enabling the transfer of useful properties and tools between 

classes used in analysis and control design [23]. One of the possibilities is the approximation of nonlinear 

dynamics with arbitrary accuracy via multiple linearization at different operating points [27]. 

 

3. MODEL PREDICTIVE CONTROL (MPC) FOR HYBRID SYSTEMS 

 An optimal decision based on predictions of the behavior of the system carried out using the model, 

considering the current state of the process characterize a Model Predictive Control (MPC). The control policy 

used is presented in Bemporad e Morari [3], considering the equivalence between the MLD and PWA formalisms.  

The solution of optimization problem, show in Equations (6)-(10), obtain the path to the predicted behavior of the 

system. An observer should be introduced if the current state is not measurable. 

min
uk,…,uk+Hu−1

Jy(k) + Ju(k)                                                     (6)                                                                                                                                   

where 

𝐽𝑦(𝑘) =  ∑ ‖𝒚(𝑘 + 𝑗|𝑘) − 𝒚𝑟(𝑘 + 𝑗|𝑘)‖𝑸𝑘
𝑝1𝐻𝑝

𝑗=𝐻𝑤
                                                  (7)                                                                                              

𝐽𝑢(𝑘) =  ∑ ‖𝒖(𝑘 + 𝑗|𝑘) − 𝒖𝑟(𝑘 + 𝑗|𝑘)‖𝑹𝑘
𝑝2 + ‖∆𝒖(𝑘 + 𝑗|𝑘)‖𝑺𝑘

𝑝3𝐻𝑢−1
𝑗=0                                                                   (8) 

subject to a PWA systems dynamics (Equations (1) and (2)) and 

∆𝒖𝑐(𝑘 + 𝑗) = 0, 𝑗 = 𝐻𝑢 + 1,… ,𝐻𝑝                                                                 (9)                                                                                                       

𝑔(𝒙𝑐(𝑗|𝑘), 𝒖𝑐(𝑗|𝑘), 𝒚𝑐(𝑗|𝑘)) ≤ 0, 𝑗 = 1,… , 𝐻𝑝                                                (10)                                                                                      

 The matrices𝑸𝑘 , 𝑹𝑘  and 𝑺𝑘  represent square weighting matrices chosen according to the control 

objective. In this paper, take over this is constant over the prediction horizon. 𝐻𝑝 and 𝐻𝑢 are the prediction and 
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control horizons, respectively, and 𝐻𝑤 may be used to shift the prediction. If the case addressed is a problem 

formed by continuous and binary variables, then the system has a hybrid description. Control problem requires 

the solution of a mixed integer quadratic problem to select PWA models that represent the dynamic behavior of 

the system in specific states [3]. 

 

4. A CONTINUOUS STIRRED TANK REACTOR 

 To illustrate the controller introduced in this paper, let us consider a continuous stirred tank reactor 

(CSTR) fed with a flow made up of reagent A, for which an exothermic irreversible reaction occurs. The states of 

this system are defined as the concentration of the reactant 𝐶𝐴, and the temperature inside the reactor, 𝑇 .𝑇𝑐𝑓 is the 

temperature of the coolant. A dimensionless model for this system can be represented by the Equations (11)-

(13)[22]: 

𝑑𝑥1

𝑑𝑡
= −∅𝑥1𝜅(𝑥2) + 𝑞(𝑥1𝑓 − 𝑥1)                                                                             (11)                                                        

𝑑𝑥2

𝑑𝑡
= 𝛽∅𝑥1𝜅(𝑥2) − (𝑞 + 𝛿)𝑥2 + 𝛿𝑢 + 𝑞𝑥2𝑓                                                                (12)                                                                                 

𝑦 = 𝑥2                                                                                             (13)                                                                                                                                               

 For this model, 𝑥1  is a dimensionless variable corresponding to the concentration of A and𝑥2  is a 

dimensionless variable related to the temperature 𝑇. Sistu and Bequette defined the other dimensionless variables 

[28]. 

 This system allows addressing the study and control of the significant aspects of an industrial plant 

description. Among these are the steady state multiplicity, as indicated in Figure 1 and its characteristic 

nonlinearity. In addition, one can study the existing stability problem, since the system has structural complexity 

featuring stable and unstable steady states and multiple output behavior in the operating region of interest. 

 
FIGURE 1:STATIC GAIN CURVE FOR THE CSTR 

 

The nominal operating conditions are given in Table 1.  

. 

 

TABLE 1: NOMINAL OPERATIONS CONDITIONS FOR THE CSTR MODEL 
Nominal conditions 

𝛾 = 20.0 𝛽 = 8.0 

∅ = 0.0072 𝛿 = 0.3 

𝑥1𝑓 = 1.0 𝑞 = 1.0 

𝑥2𝑓 = 0.0  
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 For these conditions, the system can achieve three different values for the steady state. One of them, 

𝑃𝑠𝑠2: (𝑥1, 𝑥2) ≈ (0.5528; 2.7517) is unstable. In order to study the properties of the system being investigated, 

the system behavior around the steady state is studied with step disturbances of ±0.5,  ±0.75, and ±1. Figure 2-

Figure 4 present process response behavior. 

 
FIGURE 2: RESPONSE PROCESS BEHAVIOR IN THE NEIGHBORHOODS OF 𝑷𝒔𝒔𝟏 BEFORE THE STEP DISTURBANCE 

OF ±𝟎. 𝟓, ±𝟎. 𝟕𝟓  AND ±𝟏 IN 𝝉 = 𝟓 

 

 
FIGURE 3: RESPONSE PROCESS BEHAVIOR IN THE NEIGHBORHOODS OF 𝑷𝒔𝒔𝟐 BEFORE THE STEP DISTURBANCE 

OF ±𝟎. 𝟓, ±𝟎. 𝟕𝟓  AND ±𝟏 IN 𝝉 = 𝟓 
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FIGURE 4: RESPONSE PROCESS BEHAVIOR IN THE NEIGHBORHOODS  𝑷𝒔𝒔𝟑 BEFORE THE STEP DISTURBANCE OF 

±𝟎. 𝟓, ±𝟎. 𝟕𝟓  AND ±𝟏 IN 𝝉 = 𝟓 

 

 Figures  2 and  4 presents  the behavior of steady state points stable since the bounded changes in the 

input variable u generate bounded changes in output variable. In Figures 3,  it is noticed that the system tends to 

reach another steady state when subjected to a limited disturbance and this new point is a stable steady state.  

 

5. MODEL PREDICTIVE CONTROL FOR CSTR 

The control technique for hybrid systems with MPC presented in Section IV is applied to the CSTR 

system. Three model-based predictive controllers have been investigated and compared. The first controller is 

based on the original nonlinear model; the hypothesis of no plant/model mismatch was assumed. The selected 

control policy requires the solution of a nonlinear programming problem with constraints at every sampling time.  

The second controller uses a linearized model at each instant k.  The linearization and discretization of 

the nonlinear model is carried out continuously at every sampling instant and the model found is used as a 

reference to predict the trajectory of the system and de ne the action of this controller. The controller requires the 

solution a quadratic programming problem at every sampling time. 

MPC control used PWA model. The model consisted of a linear description for each region. The 

definition of the region for each model was a simple selection based on the bifurcation observed in the behavior 

of 𝑥2. Unlike the locally linearized description, the model used by the controller is upgraded only when the region 

to which the states and inputs belongs changes. Binary variable in the formulation automatically performed this 

selection.  

The controller requires the solution of a mixed integer quadratic programming problem. In this research, 

the problem was developed using Scilab. For all controllers, it was assumed that 𝐻𝑢 = 𝐻𝑝 and 𝐻𝑤 = 0.  

In order to investigate the regional model based predictive controller, the state space of the operational 

region was sought, and a linearized model at each nominal state was generated such that each selected region 

includes a single steady state and no empty space, no intersection in the operating space was allowed. Equation 

(14) gives the set of discretized linear models.     

{
 

 
𝒙(𝑘 + 1) = {

𝑨1𝒙(𝑘) + 𝑩1𝒖(𝑘) + 𝑏1, 𝒙(𝑘) ∈ 𝛺1
𝑨2𝒙(𝑘) + 𝑩2𝒖(𝑘) + 𝑏2, 𝒙(𝑘) ∈ 𝛺2
𝑨3𝒙(𝑘) + 𝑩3𝒖(𝑘) + 𝑏3, 𝒙(𝑘) ∈ 𝛺3

𝒚(𝑘) = 𝑪𝒙(𝑘) = [0 1]𝒙(𝑘)

                     (14)                                                           
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The respective regions are defined by 𝛺1 = [0; 1] × [0; 1.709[ ,  𝛺2 = [0; 1] × [1.709; 3.8172[ and 𝛺3 =
[0; 1] × [3.8172; 6]. Thus, each has its respective steady states in nominal operating conditions. 

By associating a binary variable for each region defined, we have Equations (15) and (16).  

{
 

 
𝒙(𝑘 + 1) = {

𝑨1𝒙(𝑘) + 𝐁1𝐮(k) + b1, if   δ1 = 1  

𝐀2𝐱(k) + 𝐁2𝐮(k) + b2, if   δ2 = 1  

𝐀3𝐱(k) + 𝐁3𝐮(k) + b3, if   δ3 = 1  

𝐲(k) = 𝐂𝐱(k) = [0 1]𝐱(k)

                                                (15)                                                                                      

 

{

δ1 = 1 ↔   x2 < 1.709
δ2 = 1 ↔   1.709 ≤ x2 < 3.8172

δ3 = 1 ↔   3.8172 ≤ x2 < 6
                                                               (16)                                                                                                                

 Regional-MPC has the advantage that it can be used in cases where a nonlinear model is not available, 

which would preclude the development of any predictive controller based on such a model as well as any controller 

based on the locally linearized model. Small perturbations in the plant allow the development of a regional model 

that can be applied as the basis for the controller, enabling a new approach for controlling a process with these 

characteristics. 

The simulation scenario is defined by the switching in the controller setpoint between the three steady states points 

for input variable u = 0. The transition, for tf time simulation, control objective chosen is: 

• For t < 0.8tf or t > 0.2tf:x2ss ≈ 0.8860 

• for 0.2tf < t < 0.4tf  and 0.6tf < t < 0.8tfx2ss ≈ 2.7517 

• for 0.4tf < t < 0.6tf : x2ss ≈ 4.7049 

 The system was subjected to the action of the controllers so that the simulation scenario was kept in all 

three cases. The system was subjected to operating condition constraints for which the upper and lower bounds 

for u were - 2 and 2, respectively. Adding a control move speed constraint would not change the main aspects of 

the analysis. 

Figure 5 presents the resulting controlled variable and input u that allow achieving the goal in the scenario selected 

for study. 

 
FIGURE 5:CSTR PROCESS RESPONSE UNDER THE ACTION OF THE CONSTRAINED MPC 

 

 It is possible to see that all addressed controllers managed to reach the required steady state and keep the 

system at this point as needed. The Regional-MPC was more sensitive when compared to others in relation to the 
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input variable and its variation between one moment and another. However, it was able to keep the system at a 

particular point without great difficulty even when this  point was an unstable steady state. The line used in each 

controller was only to indicate if the desired control was reached. Figure 6 presents the behavior of the logical 

variable representing the region selector of the model used. 

 
FIGURE 6: REGIONAL MODEL SWITCHES FOR THE CSTR CONTROL BY THE REGIONAL-MPC. 

 

Local-MPC demanded more of the manipulated variable in the transition regions between the setpoints.  

Regional-MPC proposal presented a behavior for this variable similar to the NL-MPC although with smaller 

overshoot in the controlled variable.  In addition, the computational effort for the resolution of the Regional-MPC 

is significantly smaller when compared to the controller based on the nonlinear model, reducing the simulation 

time by about three times when compared to NL- MPC and twice with respect to the simulation time required by 

Local-MPC.  

 The system of control can, with a satisfactorily manage regional model, the transitions required in the 

scenario investigated. It is seen that the activation scenario models meets the requirement of “exclusive or" for 

the regions of the models. So the considered plant is satisfactorily controlled in the scenario investigated. 

 

II. CONCLUSIONS 
 In this paper, a model predictive control (Regional-MPC) was studied based on three different grades of 

models for a system that presents multiple steady states. One of the models used was based on a hybrid formalism 

presenting continuous and discrete dynamics. The system was satisfactorily controlled by Regional-MPC when 

compared with a model predictive control based on a nonlinear model.  

 Although Regional-MPC has been shown to be more sensitive to the tuning, the goal of the control 

problem was achieved and the advantage of this control is the possibility to deal with linear models in several 

points of interest with not much computational e ort (since it would have a linear description). However, the 

identification of the regions to which each continuous model is attributed is not an easy task, especially if both 

the model and the regions are unknown. The investigation of an appropriate region selection for the Regional-

MPC would be necessary to make it a better controller alternative. 
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