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ABSTRACT: This paper presents a novel approach of finding energy-efficient trajectories for mobile robots. The 

approach integrates new cost and heuristic functions into the conventional A* algorithm while considering 

ground conditions and obstacle positions. The resulting planner helps to manage obstacle avoidance and to 

choose intelligent displacements of the robot. A heuristic function with energy-related criterion is defined in order 

to generate energy-efficient paths. 𝜂3 -Splines continuity property is exploited to generate smoothed 

energy-paths. The optimal velocity profile for minimum travel time is found by solving Sequential Quadratic 

Problem (SQP). A series of simulations demonstrate the energy saving efficiency of the proposed method.  
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I. INTRODUCTION 
 Energy saving techniques for mobile robots abound in the literature [1, 2, 3, 4, 5]. They empower 

mobile robots to perform more complex and long-lasting missions. Despite the existence of various energy saving 

techniques [1, 2, 3, 4], minimizing the energy consumption of mobile robots remains a real challenge. In [3], an 

energy-saving approach for mobile robots by avoiding torque saturation that generally occurs at the wheels DC 

motors while climbing hills was proposed. A predictive control was implemented to solve the torque saturation 

problem. Recently, motion planning has emerged as one of the best ways to minimize energy consumption of 

mobile robots. As a result, velocity planning which could save battery energy by up 5% compared with the 

widely used trapezoidal velocity profile was proposed in [4]. [6] compared the energy consumption of different 

routes at different velocities by considering the energy consumed for accelerations and turns. Other contributions 

based on the optimal motion planning approach and using various energies criteria were also proposed [4, 2]. 

Among existing contributions in energy savings, based on effective motion planning, some stand out 

thanks to the choice of the energy criterion. The shortest path length criterion was used by many researchers to 

minimize energy consumption [7, 8, 9, 10, 11, 12]. However, the shortest route may not necessarily result in 

minimum energy consumption. Some factors such as the surface of the navigation or the shape of the planned 

trajectory might affect significantly the energy consumption. The reduction of the steering actuation was used in 

[11] as an energy criterion for mobile robots energy minimization. A smoothness criterion depending on the 

acceleration was used in [12] for energy saving. However, in the aforementioned techniques, a model that can be 

used to simulate the energy consumption of the mobile robot was not fully investigated. An interesting technique 

was proposed in [2]. From an energy consumption model of a two-wheeled mobile robot, the authors defined an 

energy-related criterion. However, the proposed algorithm does not always find the energy-saved path. 

To overcome the aforementioned problems, this work integrates new cost and heuristic functions into the 

                                                      
1
Physics Department of Faculty of sciences, the University of Yaoundé 1 

2
Electrical and Telecommunications Engineering Department of Ecole Nationale Supérieure Polytechnique, the 

University of Yaoundé 1, Cameroon 
3
Polytech’Lille, CRIStAL, CNRS-UMR 9189, Avenue Paul Langevin, 59655 Villeneuve d’Ascq, France 

http://www.ajer.org/


American Journal of Engineering Research (AJER) 2019 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 216 

conventional A* algorithm. The former helps to manage obstacle avoidance with minimum energy cost, and the 

last one to better deal with ground conditions. The number of turns of the generated paths is also reduced. The 

proposed approach can be summarized in three main steps. Energy consumption model of the mobile robot is first 

developed. Based on the energy model, a new energy-related criterion is defined and collision-free paths are 

generated, thereafter. Finally, the waypoints are selected and η3-splines with optimal shaping parameters are used 

to smooth the energy-saved paths. 

 The remainder of the paper is organized as follows. The energy model of a Three-Wheeled 

Omnidirectional mobile robot (TOMR) is developed in Section II. In Section III, an A* path planner with new cost 

and heuristic functions is first introduced and η3-splines for path smoothing is presented, thereafter. Simulation 

results are provided in Section IV, and concluding remarks are given in Section V. 

 

II. ENERGY MODEL OF THREE-WHEELED OMNIDIRECTIONAL MOBILE ROBOT 

 In this section, an energy consumption model for a three-wheeled omnidirectional mobile robot (TOMR) 

is developed. The mobile robot named Robotino and shown in Figure 1 is used as a case study. It is a holonomic 

mobile robot with three omnidirectional drive units mounted at an angle of 120 degree to each other. The 

kinematic equations are first derived and the energy consumption model is developed, thereafter.  

 
Figure  1: Kinematic model of a TOMR 

 

2.1  Kinematics of the three-wheeled omnidirectional mobile robot 

  Figure 1 depicts the structure of a TOMR that is driven by three identical DC motors. q =  x y θ T  

represents the robot coordinates, where x and y denote the linear coordinates relative to global frame, and θ its 

orientation with respect to the X axis. The kinematic equations of the TOMR can be expressed as follows:  
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 By reversing (2) and combining with (1), the equation establishing the relationship between the velocities of the 

wheels and those of the robot is derived.  
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2.2  Energy consumption model of the three-wheeled omnidirectional mobile robot 

  In TOMR, the motors and other components such as sensors, on-board computers, and electric circuits 

are the main sources of energy consumption [13]. In the following subsection, the energy consumption model is 



American Journal of Engineering Research (AJER) 2019 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 217 

derived by considering the losses in DC motor, the losses due to transform back the kinetic energy to the 

equivalent electric energy, the losses due to friction, and the losses in the electronic components. 

 

2.2.1  Losses in DC motor 

  The motor purpose is to draw current from the battery and convert the electrical energy to mechanical 

energy. However, this conversion is not perfect; there is a loss in the armature resistance, friction, windage, etc. 

The energy loss in the armature resistance being most significant is that it is taken into account. The losses due to 

friction, windage, etc. are supposed negligible. Thus, the energy loss in motors noted Em  can be expressed as 

follows:  

 Em =
1

Ra
 ‍

t
  ‍3

i=1  Ui −
Kb Vi

r
 

2

 dt (4) 

  where Ra  is the armature resistance, Ui is the motor voltage, Kb  is the back electromagnetic force 

constant, Vi is the linear velocity of the ith  wheel, and r the wheel radius. We assume three motors powered 

with same voltage U, by including (3) in (4), losses in DC motor are related to linear and angular velocities of 

robot by:  

 Em =
1

Ra
 ‍ 

3U2 − 6
bKb Uw (t)

r

+
Kb

2

r2
 3b2w(t)2 + 32v(t)2 

 dt (5) 

 

 

2.2.2  Kinetic Energy Losses 

 A part of the available output energy from motors is used to increase kinetic energy and accelerate the 

robot. During deceleration phase, the kinetic energy could be transform back, but this is not effective, part of it 

dissipates into heat. So the kinetic energy loss equation can be expressed by following :  

 Ek =  ‍
t

d 12mv(t)2 + 12Iw(t)2  (6) 

 where, m and I are mass and moment of inertia of the robot, respectively, v t  and ω t  are linear and angular 

velocities, respectively, d .   is derivative operator considered for it positives values only. 

 

2.2.3  Losses due to frictions 

 A second part of the available output energy is used to overcome the rolling friction or rolling resistance 

which is caused by the slight deformation of the ground or the wheel at the point of contact. The powers necessary 

to overcome the friction of each wheel is expressed as:  
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 where μ is the rolling friction coefficient that depends on the surface type of the ground, m is the mass of 

robot, g denotes gravitational acceleration. The total friction power PF  is obtained by summing the individual 

power. Substituting (3) into (7), the energy loss in friction can be expressed as:  
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2.2.4  Losses in the electronics components 

 A robot system has on-board electronic components which usually include the DC motor drivers, sensors 

and micro-controllers. The energy consumption of these components within a unit of time is relatively stable and 

can be presented as the power consumption Pe . The latter can be experimentally measured. So, the energy 

consumed by on-broad electronic components is given by:  

 Ee =  ‍
t

Pedt (9) 

 

2.2.5  Energy consumption model of TOMR 

Finally, the energy model of TOMR in terms of energy consumption in motors and electronic components can be 

expressed as:  
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III. EFFICIENCY MOTION PLANNING FOR ENERGY MINIMIZATION 
 In this section, the modified A* algorithm with new cost and heuristic functions is first introduced and η3-splines 

with optimal shaping parameters for path smoothing is presented, thereafter.  

 

3.1  Modified A* algorithm 

 A* algorithm has been widely used in path planning [2, 11, 12]. In robotics, path planning consists of 

finding successive states (cells) on a grid map that allows the robot to move from an initial state (start) to a final 

state (goal) by avoiding obstacles [14]. A* algorithm plans the path on a grid map. Each grid constitutes a node 

that can be free or occupied by an obstacle. The path is planned from a start node (sstart ) to a goal node (sgoal ), 
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with sstart , sgoal ∈ S, and S being the possible set of robot locations [15]. Let s be the actual node, an evaluation 

function f s′  is used to determine which node should be expanded next. The next node denoted s′ is one of the 

successors of the node s. The actual node has a total of eight successors. The values f s′  of each successor of the 

node s are calculated and the successor with the smallest value of f s′ , denoted s′, is considered. The evaluation 

function f s′  is the sum of two functions, a heuristic function h s′, sgoal   that represents the estimated cost of an 

optimal path from the node s′ to the node sgoal , and a function g s′  representing the actual cost of the path from 

the node sstart  to the node s′ passing through s node [16].  

 f s′ = g s′ + h s′, sgoal   (11) 

 The values of g s′  are derived from the value of g s  as follows:  

 g s′ = g s + c s, s′ , (12) 

 where c s, s′  represents the cost to move from node s to node s′. This cost can be designed to suit the 

need [15]. The travel distance was widely used as a cost function to minimize energy consumption [8, 9, 10, 11, 

12]. To plan energy-saved paths, a valuable contribution was proposed in [2] where, a part of total energy 

representing loss due to friction zones has been used in path finding. The cost function (13) and the heuristic 

function (14) were defined, and a penalty factor ρ s′ ∈ [0,1] was integrated into the cost function to maintain a 

safety distance from obstacles. 
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 h s′, sgoal  =  3μs,s′mgds′,sgoal
, (14) 

 

Where μs,s′ and ds,s′ are the friction coefficient and distance between the two nodes s and s′, respectively. 

The penalty factor related to the distance to the obstacle is given by:  

 ρ s′ =  

1, λs
′ > λsafe

λs
′ −b

λsafe −b
, b < λs

′ ≤ λsafe

0, λs
′ ≤ b

  (15) 

  where λs ′ is the distance of the cell s′ to the nearest obstacle, λsafe  is the safety distance defined for 

safe motion of the robot [2], b is the half size of the robot. However, the fact that in the heuristic function (14), the 

friction (μs,s′) is multiplied by the distance from s′ node to goal node sgoal  suggests that μs,s′ extends up to goal 

node; which is not always the case. In this paper, a new heuristic function (20) is defined to better deal with 

friction zones. 

 To reduce path turn and numbers of evaluated nodes of traditional A*, we introduce an angular penalty 

factor in cost function. For this purpose, we investigate three functions name as square (16), sine (17) and gaussian 

(18). Figures 2,3 and 4, show the effect of these functions in the grid map. The latter passes from a flat surface 

(node plane) to a hollow surface allowing the robot to move in the same direction. The penalty functions affect 

higher costs to nodes that are not in the robot direction and lower costs to those are placed in its direction. 
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Where α ∈  −1,1  is a normalized angle.  
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Figure  2: Turning angle penalty Square function (16) 

 
Figure  3: Turning angle penalty Sine function (17) 

 
Figure  4: Turning angle penalty Gaussian function (18) 

 

All functions that have same sharp as those presented above can help traditional A* reduce numbers of turn, 

evaluated nodes as well as simulation time. Simulation results of these function on A* algorithm for minimum 

distance are shown in section IV. The cost function used in this paper is defined as follows:  

 c s, s′ =  3μs,s′mgds,s′  ϕ(α) +
1

ρ s′ 
  (19) 

 where α ∈  −1,1  is the normalized angle formed by the segment s′s and the previous direction of the robot 

Figure 7, ρ(s′) is a penalty factor related to the distance to the obstacles (15). 

The heuristic function is modified as follows: the node goal sgoal  introduced in Liu and Sun’s distance ds′,sgoal
 is 
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replaced by a neighbor of the node s′ with minimum heuristic value denotes s′′, and its heuristic h(s′′, sgoal ) is 

added to heuristic function (20).  

 h(s′, sgoal ) =  3μs′,s′′mgds′,s′′ + h(s′′, sgoal ), (20) 

 where h(s′′, sgoal ) is the minimum heuristic function value of the successors of the node s′.  

 
Figure  5: Heuristic value: (left) Liu and Sun (14) and (right) Proposed (20) 

 

 Figure 5 represents on a 6x8 grid map, the heuristic values of the proposed heuristic function (right-hand 

side) and Liu and Sun’s heuristic function (left-hand side). In both diagrams, grey spaces represent friction zones, 

the black boxes are the obstacles, and the green circle is the goal node. We notice that the values obtained from Liu 

and Sun’s heuristic function are very large for friction zones, which discriminate passages through the latter, even 

if passages through them yield a minimum energy consumption. However, we observe reasonable values in the 

proposed heuristic function giving a good estimation of friction zones. 

In short, an optimal path with minimum energy consumption can be obtained by using the proposed cost function 

(19) with complete Algorithm 1. 
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3.2  𝛈𝟑-Splines smooth path with minimum energy 

 This subsection focuses on the smoothing of the generated paths while minimizing energy consumption. 

The logical step following the path generation is the tracking of the latter with a minimum time. Thus, in order to 

obtain continuous paths, η3-Splines, thanks to its third order geometric continuity with continuous tangent vector, 

curvature, and curvature derivative along the arc length, was used for path smoothing. The smoothing can be 

summarized in three steps (see Algorithm 2): the selection of the Waypoints along the path generated, the 

selection of the optimal shaping parameters via an optimization problem, and the tracking of the smoothed path 

with minimum time through another optimization problem. 

 The Waypoints are selected on the generated path as follows: The start and goal positions as well as 

closed neighbors of knee points along the path are selected. Two neighboring waypoints are combined if they are 

close enough, and new waypoints may be inserted if they are extremely distant. The orientation θ ∈  0,2π  at 

each waypoint is set along the next segment of the generated path Figure 6; concerning the endpoint, the robot 

orientation is set to the previous orientation. 

 

 
 

Figure  6: (a) Turning angle: gray cell s, white cell s′, dot line is the previous direction; (b): Waypoints selection 

 

η3 -Splines are seventh order polynomial curves which smoothly connect two arbitrary points qi−1 =
 Xi−1 Yi−1 θi−1 T  and qi =  Xi Yi θi 

T  where [X, Y]  and θ  are the robot position and orientation, 

respectively. η3-Splines is parameterized by: q u =  x u y u  T , u ∈  0,1  with x(u) and y(u) defined as:  

 x u = a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5 + a6u6 + a7u7 (21) 

 

 y u = b0 + b1u + b2u2 + b3u3 + b4u4 + b5u5 + b6u6 + b7u7, (22) 

 where the polynomial coefficients ai , bi , i = 0, . . . ,7 depend on six shaping parameters ηi , i = 1, . . . ,6  [17]. 

 These parameters influence only the path shape; the endpoints interpolating conditions i.e. the position, 

the unit tangent vector, the curvature, and the curvature derivative, remain unchanged. 

 To maintain a safe distance to the obstacle, the curvatures of η3-splines curves are constrained to the 

maximal bound kmax  while the path length is minimized [18]. This constitutes the first optimization problem, 

defined as follows:  

 min
η∈ℜ

sq  (23) 

 

  k(u) ≤ kmax , u ∈  0,1 , (24) 

 where sq  is the arc length of a spline curve between two endpoints. The curvature k(u) with respect to u is 

described in (25)  

 k(u) =
 x y −x y  

 x 2+y 2 3/2 (25) 

 The above problem is a sequential quadratic problem (SQP), its resolution leads to the selection of optimal 

shaping parameters. 

 The second optimization problem concerns the tracking of the smoothed paths with minimum time. Let 

d t , the arc length measured along the smoothed path at time t, df  the total length of the smoothed path, and tf  

the time required to travel the smoothed path. To minimize energy along this path, t  f  need to be minimal while 

satisfying the velocity and acceleration constraints. This problem has been addressed in detail in [19]. The 

smoothed path is divided in N − 1 elementary equal parts of length l =
df

N−1
. Velocity along the j − thelementary 

part is considered constant and set as the average 
vj +vj+1

2
 of the velocities of the two endpoints. The total time tf  

is the sum 
2l

vj +vj+1
 of the time taken to cover the elementary parts.  

 tf = 2l  ‍N−1
j=1

1

vj +vj+1
 (26) 

 This optimization problem is defined as follows: 
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Find the velocity sequence v: = (v1 , . . . , vN ) ∈ ℜN  which min
v∈ℜN

2l  ‍N−1
j=1

1

vj +vj+1
 subject to constraints (27-30).  

 v1 = vstart , vN = vgoal  (27) 

 

 0 ≤ vj ≤ vmax , j = 1, . . . , N (28) 

 

 amin
h ≤ aj

h ≤ amax
h , j = 1, . . . , N − 1 (29) 

 

 vj
2 kj ≤ amax

n , j = 1, . . . , N. (30) 

 Where ah  and an  are the longitudinal and normal accelerations, and kj  the path curvature of the jth  

elementary part. 

Finally, after the selection of shaping parameters  η1 η2 η3 η4 η5 η6 T  and the velocities (v1, . . . , vN ) 

along the smoothed trajectory, the energy model (10) is reformulated as follows:  

 ET =  ‍N−1
j=1 Ej , (31) 

 with Ej  the energy consumed for j − th part of the elementary path, and defined as follows:  

 

Ej =
1

Ra
 

3U2 − 6
bKb UK j Vj

r

+
Kb

2

r2  3b2Kj
2Vj

2 +
3

2
Vj

2 
 × tj

        +
1

2
max m Vj

2 − Vj−1
2  + I kj

2Vj
2 − kj−1

2 Vj−1
2  , 0 

        +μmg   bkjVj + 2 max   bkjVj ,  
 3

2
Vj   × tj

        +Petj

 (32) 

 where Vj =
vj +vj +1

2
, kj , and tj  are the average velocity, the path curvature, and the travel time of the jth  

elementary part, respectively.   
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3.3  Outline of the proposed motion planning 

 An outline of the proposed motion planning for energy minimization is given here. Initially, map is 

scanned to get start, goal and obstacles position with ground characteristic. Heuristic value of all cells is evaluated 

and modified A* algorithm is run to find path (Algorithm 1) on which waypoints are selected for smooth 

trajectory generation. Orientation at each waypoint is set, first SQP is solved to find shaping parameters of 

η3-splines and smooth path is obtained. The later is divided in N-1 arc with equal length, second SQP is solved to 

get velocity profile along smoothed path and total energy consumption of trajectory is estimated (Algorithm 2). 

 

IV. MODEL VALIDATION AND SIMULATION RESULTS 
  In this section, simulations are conducted to demonstrate the effectiveness of the proposed algorithm. 

The section starts by the identification and validation of the energy model, and ends by simulation results and a 

discussion. 

 

4.1  Identification and validation of the energy model of the Robotino mobile robot 

  The Robotino robot is supplied by two 12V batteries which permit a running time of up to two hours. 

The robot’s dimensions are 350mm in diameter and 210mm in height with an overall weight of approximately 

11kg. The platform embeds numerous application programming interfaces layers. While the Linux layer provides 

standard user space, the platform can also be controlled from an external PC via the wireless communication, by 

using the Real Time Linux layer. Experimental tests were performed to identify the modeling parameters μ and 

Pe  for the Robotino robot. 

 The ground friction μ was identified by driving robot on a carpet surface. In the experiment, the robot 

accelerated from zero to the desired velocity and maintains it for 5s. The robot runs freely until it stops, thereafter. 

The parameter μ was estimated by following the coast-down equation [13]:  

 μ =
vi

gt
 (33) 

  where g represents gravity. The relationship between the elapsed time t and the robot velocity v could 

be obtained by fitting the curve. For a carpet surface, the value of μ ≈ 0.013 ± 0.003 was obtained. 

The energy consumed by the electronic components was identified by letting the robot stopped at fixed position 

while turning on the power to control the current drawn from the battery. In this situation, the power consumption 

of the motors was zero and the energy consumption for electronic components was counted. The battery current 

was stable, and parameter Pe  was calibrated  1.46 ± 0.05 W. 

Finally, the energy model of the Robotino robot was calibrated as follows:  

 

ET =
1

7.9
  

3U2 − 0.656Uw t 

+0.39 0.09w t 2 + 1.5v t 2 
  dt

      +  d 5.5v t 2 + 0.08w t 2 
t

 

    +1.43    0.175w t  + 2 max  
 0.175w t  ,
 0.866v t  

   dt

    +1.46t

 (34) 

 

4.2  Simulations results and discussion 

  The effectiveness of the proposed motion planning was demonstrated by conducting a series of 

simulations. Based on the energy model (34), simulations were performed in an environment containing 50 × 50 

grids with wall-like obstacles. The grid size is set based on the robot and obstacles dimensions. It is considered as 

a square of 350mm of side. In each environment, grey spaces represent friction zones, the black boxes are the 

obstacles, the red circle is the start node and the green circle is the goal node. Table 1 lists the parameters used in 

simulations.  

 

Table  1: Robotino parameters 
Parameters  Value  Parameters  Value 

Wheel radius  40mm Battery voltage  24V 

Robot radius  175mm  Robot mass  11kg 

M. of inertia 0.16245𝑘𝑔. 𝑚2  Max velocity 1.325𝑚. 𝑠−1 

Back emf. 0.025𝑉. (𝑟𝑎𝑑. 𝑠𝑒𝑐)−1 Resistance𝑅𝑎  7.9𝛺 

 

 The performance of the proposed energy saving method was assessed as well in cluttered environments 

that those containing different friction areas. Regarding comparison with existing contributions, the proposed 

energy saving approach is compared with the Liu & Sun’s method which showed satisfactory performance over 

existing approaches [2, 11, 12]. In order to preserve the main property of the A* algorithm, our method is 

compared with a motion planning method based on the Newton algorithm [8]. Computational costs were 
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measured in MATLAB under a personal computer with a 1.5𝐺𝐻𝑧 Intel Pentium M CPU processor and 1.00Go 

Random Access Memory. Regarding the simulation results, four scenarios were considered. The ability to 

generate energy-saving paths in a cluttered environment was assessed in the first and second scenarios while the 

behavior in environments containing varied frictions zones was assessed in third and fourth scenarios. 

 

4.2.1  Generated paths 

  To select a function on the three proposed above, simulations are done with these functions integrated in 

A* cost function for minimum distance as 𝑐 𝑠, 𝑠′ = 𝑑𝑠,𝑠′ 𝜙(𝛼) + 1 . Table 2 shows simulation times, path’s 

shape turn and evaluated nodes. These functions shorten evaluated nodes as well as simulation time, and decrease 

path turn where possible. Its find same path or different paths with equal length. Regarding results, sine function is 

selected as it has low simulation time and better reduces path turn with minimum decrease of nodes evaluation 

(More diminution of evaluated nodes can affect path quality). The simulation times, the number of shape turn of 

generated path, and the path lengths of the fourth scenarios were computed and compared, Table 3. We indicate in 

bracket the time taking to evaluate heuristic values, simulation time for proposed method integrate this time. 

 

Table  2: Simulation results: simulation time (average of 5 run), number of turn,evaluated nodes 
Gridmap Functions Time (𝑠) Turn Nodes 

Scenario 1 

 None   0.406  14 685 

Gaussian  0.346  10  485 

Square   0.277  8   490 

Sine  0.276  8  505 

Scenario 2 

None  0.245  10 354 

Gaussian  0.202  9  104 

Square   0.206  9   118 

Sine  0.214  9  173 

Scenario 3 

None   0.379  22  787 

Gaussian  0.367  17   694 

Square   0.359  13   705 

 Sine  0.357  14  723 

Scenario 4 

None   0.300  6  432 

Gaussian  0.271  6   355 

Square   0.269  6   338 

 Sine  0.255  6  338 
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Figure  7: Generated paths 

 

 Friction zones with rolling coefficient of 0.015 were set while flat zone has a rolling coefficient of 

0.013 in first scenario, Figure 7-(a). The basic A* algorithm for minimum travel distance found the optimal path 

in approximately 0.4𝑠 with 14 turns Table 3. The path generated based on Liu & Sun’s method are found in 

approximately 0.44𝑠 with 15 turns and measure 23.28𝑚. The optimal path generated by the proposed cost 

function (19) with (17) and heuristic function (20) is found in approximately . 37𝑠 with 14 turns. In the second 

scenario, friction zones have rolling coefficient of 0.01628, Figure 7-(b). The basic A* algorithm use 0.39𝑠 to 

get the optimal path having 22 turns. Liu & Sun’s method generates optimal path of 33.05𝑚 in 0.75𝑠. The 

optimal path generated by the proposed method is found in approximately 0.4𝑠with 30.25𝑚 of length, path 

passed through two frictions zones. Friction zones with rolling coefficient varying from 0.015 to 0.020 were set 

in third scenario, Figure 7-(c). A* algorithm for minimum travel distance found the optimal path in approximately 

0.28𝑠 with 25.07𝑚 of length, path passed in three high frictions. The path generated based on Liu & Sun’s 

method are found in approximately 0.71𝑠 with 14 turns and proposed method found path of 26.71𝑚 with 6 

turns in approximately 0.39𝑠. For fourth scenario, rolling coefficient of friction zones varying from 0.015 to 

0.017, Figure 7-(d). Minimum travel distance method found the optimal path in approximately 0.32𝑠 with 6 

turns. The path generated based on Liu & Sun’s method are found in approximately 0.6𝑠 with 8 turns. Proposed 

method generates path of 21.16𝑚 length in approximately 0.42𝑠. 

 

Table  3: Simulation results: simulation time (average of 5 run), number of turn, and path length 

Gridmap Methods Time (𝑠) Turn Length(𝑚) 

Scenario 1 

Min dist  0.404  14  21.88 

Liu & Sun   0.444  15   23.28 

Proposed  0.366(0.162)  14  23.28 

Scenario 2 

Min dist  0.394  22 25.72 

Liu & Sun   0.746  16  33.05 

Proposed  0.398(0.184)  11  30.25 

Scenario 3 Min dist  0.276  10 25.07 
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Liu & Sun   0.709  14  33.34 

Proposed  0.389(0.188)  6  26.71 

Scenario 4 

Min dist  0.317  6 18.24 

Liu & Sun   0.597  8  20.13 

Proposed  0.419(0.193)  6  21.16 

 

4.2.2  Smoothed paths results 

  To estimated the energy saving aspect of the proposed method, the generated paths are smoothed using 

𝜂3-splines while considering the energy model (31) and (32). The maximum curvature has been fixed as the 

inverse of the half size of the robot dimension for first SQP problem, while curvature at each waypoint has been 

set to −
𝜃

4𝜋
, with 𝜃 the robot orientation, and the curvature derivative set to zero. The segment joining two 

waypoints was divided into 1000 pieces for a smoothed path. The smoothed path has been divided into 100 

elementary parts for second SQP problem and the following parameters were used to find the optimal travel time: 

−0.5m. s−2 and 0.5m. s−2 for minimal and maximal longitudinal accelerations, respectively, and 0.3m. s−2 for 

maximal normal acceleration. Table 4 shows the travel time, the travel distance and the energy consumption along 

smoothed paths. 

 



American Journal of Engineering Research (AJER) 2019 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 228 

 
Smoothed paths 

Table  4: Smooth path results 
Gridmap Methods Travel time (s) Travel distance (m) Consumedenergy(J) 

Scenario 1 
Liu & Sun   37.49  22.49  8358.8 

Proposed  36.84  22.50 8213.5 

Scenario 2 
Liu & Sun   42.52  32.25 9486.7 

Proposed  38.37  29.69 8563.1 

Scenario 3 
Liu & Sun   40.03  32.54 8945.7 

Proposed  33.23  26.34 7439.0 

Scenario 4 
Liu & Sun   27.42  19.67 6130.4 

Proposed  27.12  20.86 6058.7 

 

 Paths generated by A* algorithm for minimum distance are too close to surrounding obstacles, robot 

moves on those paths will knock obstacles and energy loss by this event couldn’t be estimated. Simulation results 

of two others methods are provided with trajectories show in Figure 8. For the paths generated by Liu & Sun’s 

method, robot needs 37.5, 42.5, 40 and 27.4seconds, respectively, to join goals positions for the four scenarios. 

Consumed energy are estimated to 8358 , 9486 , 8945  and 6130  Joules, respectively. Travel distance of 

smooth trajectories are less than length of paths generated. For proposed method, robot needs more than 36s to 

follow generated paths in first two scenarios, while it consumes over 8kJ. In third and fourth scenario consumed 

energy are estimated to 7439 and 6058 Joules, while travel distances are 26.34m and 20.86m, respectively.  

 

4.2.3  Discussion 

 Traditional A* algorithm for minimum distance generates shortest paths in small time, Table 3, but 

doesn’t maintain a safety distance to obstacles, and passed through high friction zones, Figure 7. Robot moving on 

those paths pass too close to surrounding obstacles, expansively consumes energy and trajectories couldn’t be 

smoothed. Numbers of evaluated nodes before getting the optimal path of this algorithm are reduce by proposed 

functions and thus further minimize simulations times. For Liu & Sun’s method, paths generated maintain safety 

distance to obstacles and pass on low friction zones except in scenario 4 where destination is located in high 

friction zone, Figure 7-(d). Paths obtained are too long as well as simulation times, robot needs more time and 

energy to follow smoothed trajectories, Table 4. Proposed method takes approximately 0.2s to compute heuristic 

values, Table 3, but this computation improves visibility on map while finding optimal path. After heuristic values 

are evaluated, algorithm needs smallest time than previous methods to generate optimal path. Paths obtained are 

relatively shorter than Liu & Sun’s method except in fourth scenario. The smoothed path generated by proposed 

method has minimal travel time compared to Liu & Sun’s method Table 4. The proposed method saved between 

1.17%, scenario 4, and 16.84%, scenario 3, of energy over Liu & Sun’s method.  

 

V. CONCLUSION 
  An optimal motion planning aiming to achieve minimum energy consumption was proposed in this 

paper. A Three-wheeled Omnidirectional Mobile Robot (TOMR) named Robotino was used as a case study. The 

A* path planner and the heuristic function integrating energy saving criterion were used to generate energy-saved 

paths. The algorithm integrates previous robot orientations in cost function through a penalty angle function, and 

as well a new heuristic function for path generation with minimum energy consumption. Three penalty angle 

functions are proposed to reduce paths turns and simulation times. By using the waypoints of the generated path, 

the trajectory was smoothed through optimal η3-Spline parameters. The velocity profile along the generated path 

is optimized by solving sequential quadratic problems. The effectiveness of the proposed motion planning was 
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demonstrated by performing a series of simulations. The proposed energy saving approach showed a better 

performance compared with the existing methods. Future work will include an extension of the proposed approach 

to dynamic environments. 
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