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ABSTRACT: Sigmoidal models were compared to describe the growth curve of Saccharomyces cerevisiae in 

batch ethanol fermentation of sugarcane molasses. Five classical functions and some of their 

reparameterizations were fitted to three experimental data sets: logistic, Gompertz, Chapman-Richards, 

Morgan-Mercer-Flodin and a Weibull-type model. Since these models are nonlinear, measures of nonlinearity 

were used to evaluate the statistical properties of the least squares estimators. The measures used were the 

intrinsic (IN) and parameter-effects (PE) curvatures of Bates and Watts, the bias measure of Box, and the 

Hougaard’s measure of skewness. Among the models analyzed, only a reparameterization of the Weibull-type 

model presented close to linear behavior, ensuring the statistical validity of the parameters estimated by the 

method of least squares.  
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I. INTRODUCTION 

Saccharomyces cerevisiae growth 

Saccharomyces cerevisiae, commonly known as baker’s yeast, is well-known and commercially 

significant among the yeasts. This microorganism has been used for a long time in the food industry, mainly in 

the baking and alcoholic beverages industries. It is also used to produce ethanol by using fermentation of 

sugarcane juice or molasses and, more recently, from lignocellulosic biomass, which further increases the 

importance of this microorganism in the biofuel industry. 

Yeast cell grows in three main phases: lag, exponential and stationary. When a culture of yeast cells is 

inoculated in a fresh growth medium, it enters a lag phase or adaptation time, where the cells are biochemically 

active but not dividing. After this, the cell growth increases slowly initially, in a positive acceleration phase; 

then it increases rapidly, approaching an exponential growth rate; but then, it declines in a negative acceleration 

phase until a zero-growth rate, when the population stabilizes. This slowdown in the rate of growth results in an 

increase of environmental resistance, which becomes proportionately more important at higher cell population 

densities. This type of growth is termed “density-dependent”, since the growth rate depends on the number of 

cells available in the population. The point of stabilization, or zero growth rate, is termed the “saturation value” 

or “carrying capacity” of the environment for that microorganism (Allaby, 2014). If the cell concentration is 

plotted against time, a typical sigmoidal or “S-shaped” growth curve is obtained.  

Processes producing sigmoidal or “S-shaped” growth curves are widespread in biology, agriculture, 

engineering, and economics. Such curves start at some fixed point and increase their growth rate monotonically 

to reach an inflexion point; after this, the growth rate decreases to approach asymptotically some final value.  

Numerous mathematical functions have been proposed for modeling sigmoidal growth curves, many of which 

are claimed to have some underlying theoretical basis. Among these are the logistic equation and the Gompertz 

model (Ratkowsky, 1983). 

In this work, sigmoidal models were compared to describe the growth curve of Saccharomyces 

cerevisiae in batch ethanol fermentation of sugarcane molasses.  Five sigmoidal functions were used: logistic, 

Gompertz (1825), Chapman-Richards (Pienaar and Turnbull, 1973), Morgan-Mercer-Flodin (1975) and a model 

derived from the Weibull (1951) distribution, here designated as Weibull-type model. Since these models are 

nonlinear, measures of nonlinearity were used to validate the inference results based on asymptotic 

approximations assumed in the least squares nonlinear estimates. The measures utilized were the intrinsic (IN) 
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and parameter-effects (PE) curvatures of Bates and Watts (1980), the bias measure of Box (1971), and the 

Hougaard’s measure of skewness (1985). The paper also discusses the misuse of the determination coefficient 

R
2
 as a measure of goodness of fit in nonlinear models. 

Nonlinear regression models 
Sigmoidal growth models are nonlinear regression models. The concept of nonlinear model and its 

consequences to statistical inference can be explained by using the following regression model: 

𝒚 = 𝑓(𝒙, 𝜽) + 𝜺 (1) 

 

 Where y is the vector of the response variables, x is the vector of the independent variables, θ is the 

vector of regression parameters, ε is the vector of the random errors and f (x, θ) is a function of the independent 

variables and the parameters, known as regression function. Generally, it is assumed that the errors εi are 

independently and normally distributed with mean zero and constant variance. When  f (xi, θ)/  θj is 

independent of θ or  f
2
(xi, θ)/ θj

2
 = 0, the regression model is called linear with respect to the parameters. If at 

least one derivative of y with respect to a parameter is a function of that parameter, the regression model is 

called nonlinear(Seber and Wild, 1989). An important consequence of the fact that a regression model is 

nonlinear is that the least squares estimators of its parameters do not possess the desirable properties of their 

counterparts in linear regression models, that is, they are not unbiased, minimum variance, normally distributed 

estimators (Ratkowsky, 1983).  

Nonlinear estimation 

Assuming that the regression function in equation (1) is twice continuously differentiable in θ, the 

residual sum of squares is given by: 

𝑆 𝜽 =   𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜽) 2𝑛
𝑖=1  (2) 

 The least-squares estimators 


θ  of the parameters are the values of θ which minimize the sum of 

squares S(θ). For linear models, there is an analytical solution which leads to the minimum value of S(θ). For 

nonlinear models, the search for the minimum value of S(θ) is performed by iterative numerical methods, and 

the algorithms used is based on a linear approximation to the regression function 𝑓(𝑥𝑖 , 𝜽) (Draper and Smith, 

1998). Thus, in nonlinear estimation, the degree of nonlinearity must be sufficiently small so that the usual 

estimation techniques developed for linear regression can be used as a reliable approximation for the nonlinear 

model. Both the effectiveness of least squares algorithms and the validity of inferences made regarding the 

parameters of a nonlinear model will be affected by the closeness of the linear approximation to the model 

(Bates and Watts, 1980). The closer the linear behavior of a nonlinear model is, the more accurate the 

asymptotic results and consequently the more reliable inferences are. There are some nonlinear regression 

models whose estimators come close to being unbiased, normally distributed, minimum variance estimators. 

Such models have been termed close to linear models by Ratkowsky (1990). 

 

Measures of nonlinear behavior 

Since most asymptotic inferences for nonlinear regression models are based on analogy with linear 

models, and since these inferences are approximate, some measures of nonlinearity have been proposed as a 

guide for understanding how good linear approximations are likely to be (El-Shaarawi and Piegorsch, 2002). 

The most used measures of nonlinearity are the curvature measures of Bates and Watts, the bias measure of 

Box, and the Hougaard’s measure of skewness. These measures are described summarized as follows. For 

further details, see the original works. 

 

Curvature measures 

 Bates and Watts (1980) divide the concept of nonlinearity into two parts: intrinsic nonlinearity (IN) and 

parameter-effects nonlinearity (PE). Relative intrinsic and parameter-effects curvatures can be used to quantify 

the global nonlinearity of a nonlinear regression model. The intrinsic nonlinearity (IN) measures the curvature 

of the solution locus in sample space. For a linear regression model, IN is zero since the solution locus is 

straight (a line, plane, or hyperplane). For a nonlinear regression model, the solution locus is curved, with IN 

measuring the extent of that curvature (Ratkowsky, 1990).  

 The parameter-effect nonlinearity (PE) is a measure of the lack of parallelism and the inequality of 

spacing of parameter lines on the solution locus at the least-squares solution. As a result, the parameter-effects 

curvature can be reduced by reparameterization of the model, whereas intrinsic curvature is an inherent property 

of the model that cannot be affected by reparameterization (Bates and Watts, 1980). 

 

Bias and skewness 

In practice, only a few of the parameters might dominate the global nonlinearity, in which case these 

parameters are the reparameterization parameters of interest. Unfortunately, the global nonlinearity measures of 
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Bates and Watts do not differentiate the parameters based on their contribution to the overall curvature. 

Manifestations of nonlinear behavior include significant bias and skewness. Hence, it is essential to estimate at 

least these basic statistical properties of the parameter estimates in order to identify the reparameterization 

parameters of interest (Gebremariam, 2014).  

The bias and skewness of the parameter estimates of a nonlinear regression model can be estimated by 

using the bias measure of Box and the Hougaard measure of skewness. The Box’s bias represents the 

discrepancy between the estimates of the parameters and the true values. Skewness is a measure of lack of 

symmetry. Hougaard’s measure of skewness can be employed to assess whether a parameter is close to linear or 

whether it contains considerable nonlinearity, because of the close link between the extent of nonlinear behavior 

of an estimator and the extent of nonnormality in the sampling distribution of this estimator (Ratkowsky, 1990). 

 

II. MATERIAL AND METHODS 

Inoculum, medium, fermentation and analyses   

This work utilized the experimental results available in the study published by Tosetto(2002). Below 

follows a brief description of the methodology used to obtain these results. For further details, see the original 

work. 

The yeast strain used was Saccharomyces cerevisiae (Mauriferm Y904, Mauri, Brazil). The inoculum 

preparation included suspending 120 g of the dried yeast in 1200 g of water, maintained at 100 rpm and 34 °C 

for 30 minutes. Three different sugar mills supplied the molasses used as a fermentation medium and in this 

work are identified merely as molasses A, B, and C. Table I shows the physical and chemical properties of these 

molasses. Before fermentation, the molasses were diluted with deionized water to reduce the concentration of 

Total Reducing Sugars to 200 g/L. For each diluted molasses, two batch fermentations were carried out at 100 

rpm and 34 ºC in a 6.0 L working volume fermenter, which included 1200 g of inoculum suspension to 4800 ml 

of sterile diluted molasses.  Samples were withdrawn at regular time intervals (one sample at every one hour up 

to ten hours) and measurements of cell dry weight quantified the biomass concentration. 

 

Table I - Chemical and physical properties of the molasses utilized in fermentation media. 
Molasses pH Sulphuric 

Acidity 

(g/L) 

Density 

(g/cm3) 

Brix 

(%) 

Total 

Reducing 

Sugars 

(g/L) 

Apparent 

Purity 

(%) 

A 5.88 5.58 1.3505 81.6 718.14 65.16 

B 6.08 4.98 1.3584 83.4 662.52 58.48 

C 6.02 7.62 1.3558 82.8 667.36 59.45 

 

Models 

The sigmoidal models fitted to the experimental growth data of Saccharomyces cerevisiae are shown in 

Table II. Due to the high initial cell concentrations used in the fermentations (see Table III, in Results and 

Discussion), all the models used in this work allow a nonzero lower asymptote. 

 

Table II – Sigmoidal models fitted to the Saccharomyces cerevisiae growth data. 
Model Equation  

Logistic y = δ + α/(1 + exp(β − γX)) (3) 

Gompertz y = δ + αexp(−exp(β − γX) (4) 

Chapman-Richards y = α/(1 + exp(β − γX))1/δ (5) 

Morgan-Mercer-Flodin y = (βγ + αXδ)/(γ + Xδ) (6) 

Weibull y = α − βexp(−γXδ) (7) 

 

Measures of nonlinearity 

In this study, the parameter estimates and their respective measures of nonlinearity were obtained by 

using the NLIN procedure of the SAS software. Details about the development, procedure, and equations for 

determining the curvature measures of nonlinearity of Bates and Watts(1980), the bias measure of Box(1971), 

and the Hougaard (1985) measure of skewness are found in the original works. 

 

Curvature measures 

 The statistical significance of the intrinsic nonlinearity (IN) and parameter-effects nonlinearity (PE) 

were evaluated by comparing these values with 1/ F , where F = F (α, n − p, p)  is the inverse of Fisher´s 

probability distribution obtained at significance level α = 0.05, p is the number of parameters and n is the 

number of observations. The value  1/ F may be regarded as the radius of the curvature of the 100(1 − α)% 

confidence region. Hence, the solution locus may be considered to be sufficiently linear within an approximately 
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95% confidence region if IN <1/ F (α= 0.05). Similarly, if PE <1/ F, the projected parameter lines may be 

regarded as being sufficiently parallel and uniformly spaced (Ratkowsky, 1990). 

 

Box’s bias 

The Box’s bias in the least square estimates of the parameters in nonlinear regression can be expressed 

as a percentage of the least square estimate. This percentage bias is estimated by: 

% Bias 𝜃  =
100.Bias(𝜃 )

𝜃 
  (8) 

According to Ratkowsky (1983), a percentage bias greater than 1% in absolute value is considered to be 

significantly nonlinear. 

 

Hougaard’s skewness 

The degree to which a parameter estimator exhibits nonlinear behavior can be assessed with 

Hougaard’s measure of skewness, g1i. According to Ratkowsky (1990), if  g1𝑖 < 0.1, the estimator of the 

parameter is very close to linear and, if 0.1 <  g1𝑖 < 0.25, the estimator is reasonably close to linear. For 

 g1𝑖  > 0.25, the skewness is very apparent, and  g1𝑖  > 1 indicates considerable nonlinear behavior. 

 
III. RESULTS AND DISCUSSION 

Table III shows the results of the growth of Saccharomyces cerevisiae in the three fermentation media. 

 

Table III – Cell dry weight concentration (X) of Saccharomyces cerevisiae in the three-fermentation media A, 

B and C. Each data set corresponds to the arithmetical mean of two runs. 
 

t (h) 

X (g/L) 

A B C 

0 17.50 17.45 16.82 

1 16.78 17.01 16.57 

2 17.55 17.74 17.28 

3 18.53 18.34 18.42 

4 20.13 19.74 19.97 

5 22.10 21.20 21.86 

6 23.94 22.36 23.41 

7 24.65 23.09 24.34 

8 24.88 23.35 24.49 

9 24.79 23.54 24.34 

10 24.52 23.41 24.41 

 

Measures of nonlinearity 

Sigmoidal models in Table II were fitted to the experimental results shown in Table III. Tables IV, V 

and VI show the least squares parameter estimates with the respective values for the measures of nonlinearity to 

the three experimental data sets. For all models, IN <1/ F (α=0.05) and therefore the solution locus may be 

considered to be sufficiently linear within an approximately 95% confidence interval. On the other hand, all 

models exhibited high parameter-effects curvature (PE <1/ F). This indicates that at least one parameter in 

each model is departing from linear behavior, and the Hougaard's skewness and Box's bias indicate which 

parameter or parameters are responsible. According to Ratkowsky
12

, parameter estimates that present a 

percentage bias greater than 1% in absolute value are considered to be significantly nonlinear. Similarly, a value 

of the standardized Hougaard’s skewness measure greater than 0.25 in absolute value indicates nonlinear 

behavior. As can be seen in Tables IV, V and VI, according to these guidelines it is possible to conclude that the 

parameter estimates responsible for the far from linear behavior of the models are, in most cases, skewed but 

unbiased.  

For the logistic model, the parameter estimates for each data set are unbiased. The nonlinear behavior 

demonstrated in Table IV can be attributed to the high skewness of the estimates of β and γ. In Table V, the 

estimate of γ is skewed and can be considered responsible for the significant parameter-effects curvature. In 

Table VI, the skewness of all parameter estimates for this model can be considered reasonably close-to-linear.  

However, the parameter-effects curvature exceeded the critical value. In this case, the nonlinear behavior is 

probably due to the estimate of γ, that presented the highest skewness among the parameter estimates. As in the 

logistic model, all parameter estimates of the Gompertz model are unbiased. The high skewness of β and γ 

parameter estimates explains the far from the linear behavior of the model. For the Chapman-Richards model, 

the estimates of α, β and γ presented high skewness. The estimates of γ have very high biases and the estimates 

of β are moderately biased, except in Table V, where the Box’ bias of β is less than 1%. The estimates of α, γ 

and δ for the MMF model are very skewed, and the estimates of γ have the most significant biases among all 

models. For the Weibull model, the high parameter-effect curvature is undoubtedly due to the estimates of γ. 
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Table IV: Statistical results of the least-squares estimation for the models in Table II. Fermentation medium A. 
Model IN PE Ρ Parameter Estimate Std. Error Skewness % 

Bias 

Logistic 0.192 0.627 0.493 α 7.627 0.246 0.18 0.18 

β 5.298 0.575 0.34 0.90 

γ 1.201 0.125 0.35 0.90 

δ 17.196 0.175 -0.17 -0.05 

Gompertz 0.247 0.786 0.493 α -7.753 0.263 -0.23 0.20 

β -3.860 0.417 -0.28 0.79 

γ -0.790 0.083 -0.32 0.83 

δ 24.708 0.118  0.04 0.01 

Chapman-

Richards 

0.335 6.856 0.470 α 7.693 0.383   0.26 0.44 

β 0.789 0.123   0.39 1.63 

γ 21.209 11.134   1.95 19.0 

δ 17.291 0.257 -0.14 -0.09 

MMF 0.278 23.688 0.470 α 25.037 0.257 0.43 0.09 

β 17.268 0.243 -0.12 -0.06 

γ 1857.7 2094.3 3.87 76.8 

δ 5.084 0.758 0.46 1.71 

Weibull 0.192 8.118 0.470 α 24.774 0.096 0.07 0.01 

β 7.680 0.185 0.10 0.08 

γ 0.004 0.002 0.94 5.39 

δ 3.470 0.248 0.25 0.45 

ρ = critical curvature value (ρ = 1/ F ), F (α, n-p, p) is the inverse of Fisher´s probability distribution obtained 

at significance level α = 0.05, p is the number of parameters and n is the number of observations. 

 

Table V: Statistical results of the least-squares estimation for the models in Table II. Fermentation medium B. 
Model IN PE Ρ Parameter Estimate Std. Error Skewness % 

Bias 

Logistic 0.152 0.660 0.493 α 6.388 0.207 0.235 0.19 

β 4.397 0.423 0.241 0.60 

γ 0.995 0.090 0.261 0.60 

δ 17.129 0.145 -0.219 -0.04 

Gompertz 0.263 0.708 0.493 α 6.373 0.216 0.205 0.20 

β 2.629 0.268 0.317 0.77 

γ 0.673 0.065 0.294 0.72 

δ 17.325 0.123 -0.089 -0.03 

Chapman-

Richards 

0.288 4.379 0.470 α 6.476 0.281 0.292 0.34 

β 0.633 0.078 0.250 0.87 

γ 11.056 3.756 1.257 7.98 

δ 17.260 0.173 -0.153 -0.05 

MMF 0.197 13.717 0.470 α 23.845 0.207 0.476 0.07 

β 17.233 0.159 -0.13 -0.04 

γ 460.6 311.2 2.346 28.1 

δ 4.098 0.459 0.282 0.82 

Weibull 0.141 5.411 0.470 α 23.491 0.078 0.127 0.01 

β 6.421 0.148 0.136 0.09 

γ 0.010 0.003 0.657 2.59 

δ 2.871 0.171 0.177 0.27 

ρ = critical curvature value (ρ = 1/ F ), F (α, n-p, p) is the inverse of Fisher´s probability distribution obtained 

at significance level α = 0.05, p is the number of parameters and n is the number of observations. 

 

Table VI: Statistical results of the least-squares estimation for the models in Table II. Fermentation medium C. 
Model IN PE Ρ Parameter Estimate Std. Error Skewness % 

Bias 

Logistic 0.136 0.568 0.493 α 7.978 0.222 -0.197 0.14 

β 4.419 0.377 -0.218 0.48 

γ 1.034 0.083 -0.239 0.48 

δ 16.570 0.160 -0.189 -0.04 

Gompertz 0.199 0.738 0.493 α -8.212 0.243 -0.171 0.40 

β -3.162 0.266 -0.245 0.15 

γ -0.661 0.052 -0.213 0.43 

δ 24.407 0.092 0.037 0.01 

Chapman-

Richards 

0.356 5.333 0.470 α 7.915 0.389 0.297 0.43 

β 0.685 0.099 0.326 1.28 

γ 12.675 5.3147 1.5632 12.2 

δ 16.833 0.255 -0.172 -0.09 

MMF 0.245 17.264 0.470 α 24.853 0.278 0.510 0.11 
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β 16.818 0.242 -0.147 -0.07 

γ 575.9 502.7 3.029 46.9 

δ 4.340 0.597 0.374 1.32 

Weibull 0.156 5.752 0.470 α 24.482 0.088 0.086 0.01 

β 7.840 0.175 0.111 0.08 

γ 0.008 0.002 0.697 2.95 

δ 3.055 0.186 0.201 0.30 

ρ = critical curvature value (ρ = 1/ F ), F (α, n-p, p) is the inverse of Fisher´s probability distribution obtained 

at significance level α = 0.05, p is the number of parameters and n is the number of observations. 

 

The parameter-effects curvature can be reduced by reparameterization of the model. Therefore, some 

reparameterizations of the logistic, Gompertz, Chapman-Richards, MMF and Weibull models, proposed by 

Ratkowsky
12

 were tested. The goal was to find ones that have smaller parameter-effects nonlinearity, whose 

behavior may thereby more closely approach that of a linear model. Reparameterization techniques are beyond 

the scope of this work and will not be discussed. 

Tables VII, VIII and IX show the new parameterizations of the models and the statistical results. The 

values of the intrinsic curvature were omitted, because reparameterization does not alter the position of the 

solution locus. The reparameterizations of the logistic model (Eqs. 19 and 20) show an increase in parameter-

effects curvatures in comparison to the original model in Tables IV, V and VI. For the first reparameterization 

of this model (Eq. 19) the high parameter-effects curvature is due to the estimates of α, β and γ. For the second 

reparameterization (Eq. 20) the nonlinear behavior is due to the estimates of γ and δ. For the first 

reparameterization of the Gompertz model (Eq. 21), the significant parameter-effect curvature can be attributed 

to the estimate of γ (Table VII), α (Table IX) or both (Table VIII). For the second reparameterization (Eq. 22), 

the nonlinear behavior is due only to the estimates of ν. The reparameterization of the Chapman-Richards model 

(Eq. 23) shows a considerable decrease in parameter-effect curvatures compared to the original model in Tables 

IV, V and VI. However, the values of PE are even larger than the critical values. Tables VII and IX show that 

the estimates of α are skewed and the estimates of β and γ are skewed and biased. In Table VIII, the only 

responsible for the nonlinear behavior of this model is the estimate of α. For the reparameterization of the 

Morgan-Mercer-Flodin model (Eq.24), Tables VII, VIII and IX show that the estimates of α, γ and δ are 

responsible for the far from linear behavior.  

Unlike the original model (Eq. 7 in Table II), for the reparameterization of the Weibull model (Eq. 27 

in Tables VII, VIII and IX) the parameter-effects curvatures are less than the critical values. Thus, this 

reparameterized model can be considered close to linear, that is, the parameter estimates are almost unbiased, 

normally distributed, and have close-to-minimal variance. The fit of this model to each data set is shown in 

Figure 1. The other models presented far from linear behavior due to skewed or biased parameter estimates, 

which implies invalid inference results based on asymptotic approximations for the least squares estimators.  

Therefore, it does not make sense to display graphs representing the fit of these models to the experimental data. 

 

Table VII – Reparameterizations and statistical results of the least-squares estimation. Fermentation medium A. 
    Parameterization  PE ρ Parameter Estimat

e 

Std. 

Error 

Skewness % 

Bias 

y

= δ + (
α − δ

1 + exp β − γ. log x  
) 

(19) 1.146 0.470 α 25.037 0.257 0.43 0.09 

β 7.527 1.127 0.49 1.76 

γ 5.084 0.758 0.46 1.71 

δ 17.268 0.243 -0.123 -0.06 

y
= δ

+ (
α − δ

1 + exp γ. (β − log x)  
) 

(20) 1.097 0.470 α 17.268 0.243 -0.123 -0.06 

β 1.481 0.031 0.010 0.07 

γ -5.084 0.758 -0.46 1.71 

δ 25.037 0.257 0.43 0.09 

y = δ + α. exp⁡(− exp γ.  x

− ε  ) 

(21) 0.751 0.493 α -7.754 0.263 -0.23 0.01 

γ 0.790 0.083 0.32 0.83 

δ 24.708 0.118 0.04 0.01 

ε 4.885 0.092 -0.01 -0.06 

y = δ + exp⁡(η − ν. θ
x) (22) 6.593 0.493 δ 17.359 0.191 -0.08 -0.05 

𝜂 2.030 0.041 0.069 0.10 

Ν 24.510 10.91 1.791 14.7 

θ 0.443 0.048 -0.114 -0.58 

y = α. (1 − exp(−β. x))γ + δ (23) 0.960 0.470 α 7.693 0.383 0.26 0.44 

β 0.789 0.123 0.39 1.63 

γ 3.054 0.525 0.38 1.71 

δ 17.291 0.257 -0.137 -0.09 

𝑦 =
 β. exp γ + α. xδ 

(exp γ + xδ)
 

(24) 1.146 0.470 α 25.037 0.257 0.43 0.09 

β 17.268 0.243 -0.12 -0.06 

γ 7.527 1.127 0.47 1.76 
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 δ 5.084 0.758 0.46 1.71 

y = α − β. exp⁡(− exp −γ . xδ) (25) 0.398 0.470 α 24.774 0.096 0.07 0.01 

β 7.680 0.185 0.10 0.08 

γ 5.480 0.396 0.25 0.45 

δ 3.470 0.248 0.25 0.45 

ρ = critical curvature value (ρ = 1/ F ), F (α, n-p, p) is the inverse of Fisher´s probability distribution obtained 

at significance level α = 0.05, p is the number of parameters and n is the number of data observations. 

 

Table VIII – Reparameterizations and statistical results of the least-squares estimation. Fermentation medium 

B. 
    Parameterization  PE ρ Parameter Estimat

e 

Std. 

Error 

Skewness % 

Bias 

y

= δ + (
α − δ

1 + exp β − γ. log x  
) 

(19) 1.144 0.470 α 23.845 0.207 0.476 0.07 

β 6.133 0.676 0.319 0.86 

γ 4.098 0.459 0.282 0.82 

δ 17.233 0.159 -0.13 -0.04 

y
= δ

+ (
α − δ

1 + exp γ. (β − log x)  
) 

(20) 1.051 0.470 α 17.233 0.159 -0.13 -0.04 

β 1.497 0.028 0.09 0.08 

γ -4.098 0.459 -0.28 0.82 

δ 23.845 0.207 0.48 0.07 

y = δ + α. exp⁡(− exp γ.  x

− ε  ) 

(21) 1.098 0.493 α -6.554 0.312 -0.39 0.39 

γ 0.639 0.080 0.34 1.08 

δ 23.386 0.121 0.07 0.02 

ε 4.935 0.129 -0.08 -0.13  

y = δ + exp⁡(η − ν. θ
x) (22) 3.735 0.493 δ 17.325 0.123 -0.09 -0.03 

𝜂 1.852 0.034 0.10 0.08 

ν 13.857 3.716 1.12 5.61 

θ 0.510 0.033 -0.10 -0.27 

y = α. (1 − exp(−β. x))γ + δ (23) 0.960 0.470 α 6.476 0.281 0.29 0.34 

β 0.633 0.078 0.25 0.87 

γ 2.403 0.340 0.24 0.92 

δ 17.260 0.173 -0.15 -0.05 

𝑦 =
 β. exp γ + α. xδ 

(exp γ + xδ)
 

 

(24) 1.144 0.470 α 23.845 0.207 0.48 0.07 

β 17.233 0.159 -0.13 -0.04 

γ 6.133 0.676 0.32 0.86 

δ 4.098 0.459 0.28 0.82 

y = α − β. exp⁡(− exp −γ . xδ) (25) 0.406 0.470 α 23.491 0.078 0.13 0.01 

β 6.421 0.148 0.14 0.09 

γ 4.593 0.278 0.18 0.28 

δ 2.871 0.171 0.18 0.27 

ρ = critical curvature value (ρ = 1/ F ), F (α, n-p, p) is the inverse of Fisher´s probability distribution obtained 

at significance level α = 0.05, p is the number of parameters and n is the number of data observations. 

 

Table IX – Reparameterizations and statistical results of the least-squares estimation. Fermentation medium C. 
    Parameterization  PE ρ Parameter Estimat

e 

Std. 

Error 

Skewness % 

Bias 

y

= δ + (
α − δ

1 + exp β − γ. log x  
) 

(19) 1.252 0.470 α 24.853 0.278 0.51 0.11 

β 6.356 0.873 0.41 1.38 

γ 4.340 0.597 0.37 1.32 

δ 16.818 0.242 -0.15 -0.07 

y
= δ

+ (
α − δ

1 + exp γ. (β − log x)  
) 

(20) 1.178 0.470 α 16.818 0.242 -0.15 -0.07 

β 1.465 0.033 0.05 0.09 

γ -4.340 0.597 -0.37 1.32 

δ 24.853 0.278 0.51 0.11 

y = δ + α. exp⁡(− exp γ.  x

− ε  ) 

(21) 0.683 0.493 α -8.212 0.243 -0.26 0.15 

γ 0.661 0.052 0.21 0.43 

δ 24.407 0.092 0.04 0.01 

ε 4.781 0.078 -0.06 -0.05 

y = δ + exp⁡(η − ν. θ
x) (22) 4.198 0.493 δ 16.801 0.179 -0.01 -0.05 

𝜂 2.072 0.037 0.10 -0.08 

ν 13.959 4.285 1.29 7.37 

θ 0.496 0.038 -0.12 -0.37 

y = α. (1 − exp(−β. x))γ + δ (23) 1.013 0.470 α 7.915 0.389 0.30 0.43 

β 0.685 0.099 0.33 1.28 

γ 2.540 0.419 0.31 1.35 

δ 16.833 0.255 -0.17 -0.09 

𝑦 =
 β. exp γ + α. xδ 

(exp γ + xδ)
 

(24) 1.252 0.470 α 24.853 0.278 0.51 0.11 

β 16.818 0.242 -0.15 -0.07 
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 γ 6.356 0.873 0.41 1.38 

δ 4.340 0.597 0.37 1.32 

y = α − β. exp⁡(− exp −γ . xδ) (25) 0.377 0.470 α 24.482 0.088 0.09 0.01 

β 7.840 0.175 0.11 0.08 

γ 4.794 0.298 0.20 0.31 

δ 3.055 0.186 0.20 0.30 

ρ = critical curvature value (ρ = 1/ F ), F (α, n-p, p) is the inverse of Fisher´s probability distribution obtained 

at significance level α = 0.05, p is the number of parameters and n is the number of data observations. 

 

The misuse of R
2
 

As readers may have noticed, the coefficient of determination R
2
 was not used as a measure of 

goodness of fit of the models. A widespread error in nonlinear regression is to believe that R
2
, the “proportion of 

explained variation”,is of use in deciding whether the nonlinear model provides a good fit to the experimental 

data. It is only when one has a linear model with a constant term that R
2 

represents the proportion of variation 

explained by the model (Draper, 1984,; Healy, 1984, Helland, 1987). For a nonlinear regression model, R
2
 does 

not have any obvious meaning (Ratkowsky, 1990). 

Although it has been demonstrated for some time that R
2
 is an inadequate measure for nonlinear 

regression, many scientists and also reviewers insist on it being supplied in papers dealing with nonlinear data 

analysis. There is still a high occurrence in the current literature where the goodness of fit of nonlinear models is 

based only on R
2
 values. In addition, several commercially available statistical software packages calculate R

2
 

values for nonlinear fits, which contributes to the misuse of this criterion (Spiess and Neumeyer, 2010). A more 

in-depth discussion of the misuse of R
2
 is beyond the scope of this paper. For further details, see the works of 

Kvalseth (1985), Willet and Singer (1988), and others. 

 

 
Figure 1 – Growth curve of Saccharomyces cerevisiae fitted with the reparameterized Weibull-type model(Eq. 

25). 

 

IV. CONCLUSIONS 

In this work, sigmoidal models were compared to describe the growth curve of Saccharomyces cerevisiae in 

batch ethanol fermentation of sugarcane molasses. Among the twelve models fitted to the experimental growth 

data, only the reparameterized Weibull-type model presented close to linear behavior, ensuring the statistical 

validity of the parameters estimated by the method of least squares. For this model, the parameter estimates are 

almost unbiased, normally distributed and have close-to-minimal variance. 

The other models presented far from linear behavior due to skewed or biased parameter estimates, 

which implies invalid inference results based on asymptotic approximations for the least squares estimators. 
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