
American Journal of Engineering Research (AJER) 2018

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

 Volume-7, Issue-9, pp-96-113

 www.ajer.org

Research Paper Open Access

w w w . a j e r . o r g

Page 96

Large-Scale Data-Centric Systems – A Research Analysis

Ch.Dhanunjaya Rao
1
, Prof.Er.Dr.G.Manoj Someswar

2

1. Research Scholar, Dr.APJ Abdul Kalam Technical University, Lucknow, U.P., India

2. Research Supervisor, Dr.APJ Abdul Kalam Technical University, Lucknow, U.P., India

Corresponding Author: Ch.Dhanunjaya Rao

ABSTRACT:Vast scale information driven frameworks enable associations to store, control, and get an

incentive from expansive volumes of information. They comprise of dispersed segments spread over an

adaptable number of associated machines and include complex programming /equipment stacks with different

semantic layers. These frameworks enable associations to take care of built up issues including a lot of

information, while catalyzing new, information driven organizations, for example, web crawlers, interpersonal

organizations, and distributed computing and information stockpiling specialist organizations. The multifaceted

nature, decent variety, scale and quick advancement of vast scale information driven frameworks make it trying

to create instinct about these frameworks, increase operational experience, and enhance execution. It is a

critical research issue to build up a technique to plan and assess such frameworks in light of the exact conduct

of the targeted workloads. Utilizing an exceptional gathering of nine mechanical workload hints of business-

basic huge scale information driven frameworks, we build up a workload-driven plan and assessment technique

for these frameworks and apply the strategy to address beforehand unsolved outline issues. Specifically, the

exposition contributes the accompanying:

1. A calculated structure of separating workloads for substantial scale information driven frameworks into

information get to designs, calculation examples, and load landing designs.

2. A workload investigation and union strategy that utilizations multi-dimensional, non-parametric

measurements to extricate bits of knowledge and create delegate conduct.

3. Case investigations of workload examination for modern arrangements of Map Reduce and enterprise

organize capacity frameworks, two cases of huge scale information driven frameworks.

4. Case investigations of workload-driven outline and assessment of a vitality efficient Map Reduce

framework and Internet server farm arrange transport convention pathologies, two research themes that

require workload-particular bits of knowledge to address. By and large, the postulation builds up a more

target and orderly comprehension of a rising and imperative class of PC frameworks. The work in this

paper advances quicken the reception of huge scale information driven frameworks to promote genuine

problems significant to business, science and everyday consumers.

KEYWORDS: Enterprise Network Storage Measure, Solid State Drives (SSD), Client Side Access Patterns,

Server Side Access Patterns, Map Reduce, Information Driven Frameworks

Date of Submission: 31-08-2018 Date of acceptance: 15-09-2018

I. INTRODUCTION

 Workload Analysis and Design Insights - Enterprise Network Storage Measure the ground before

raising urban areas. This is the second of two sections that apply the workload examination methods to

extensive scale information driven frameworks. Here, we investigate two endeavour organize capacity

workloads. The examination has an indistinguishable objectives i.e., to revelation plan and assessment bits of

knowledge not generally accessible. While both Map Reduce and undertaking network stockpiling are cases of

substantial scale information driven frameworks, they differ in the accompanying ways:

1 . Enterprise system stockpiling frameworks have a more mind-boggling structure, with capacity servers being

unmistakable from capacity customers, and each separating further into various semantic layers.

2. The workload does not contain calculation designs as that for Map Reduce, since the main role of the

framework is to capacity and recover information.

http://www.ajer.org/

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 97

3. Enterprise system stockpiling speaks to a set up sort of PC framework that has developed to wind up a sort

of huge scale information driven framework because of the changing scale and nature of the information it

stores. This is not at all like Map Reduce, which has been deliberately outlined as a substantial scale

information-handling framework. Consequently, this part fills in as a representation of the workload

examination past Map Reduce. The mix of the two parts shows that our workload examination technique

can be effective for both developing and built up frameworks.

This research paper is sorted out as it is taken up later. We start by propelling the significance of analyzing

undertaking system stockpiling workloads and portraying the follows and philosophy expansions in the part. We

at that point talk about workload behaviour as far as customer side information get to designs and server-side

information get to designs. We additionally detail the long haul advancement of information get to designs,

which enables increment to confidence that the technique means undertaking system stockpiling use cases past

the ones analyzed in this part. We close the part by featuring some venture organize capacity plan engineering

patterns uncovered by the creation work loads, and condensing the more extensive ramifications of the part with

respect to outline and assessment approaches.

II. MOTIVATION

 Endeavour stockpiling frameworks are composed around an arrangement of information get to designs.

The storage framework can be particular by planning to a specific information get to design; e.g., a capacity

framework for gushing video bolsters different get to designs than a record vault. The better the entrance design

is comprehended, the better the capacity framework plan. Bits of knowledge into get to designs have been gotten

from the examination of existing le framework workloads, normally through follow investigation thinks about.

While this is the right broad procedure for enhancing stockpiling framework plan, past methodologies have

basic inadequacies, particularly given late changes in innovation patterns. In this part, we show another plan

approach to conquer these deficiencies. The information put away on big business organize joined capacity

frameworks is experiencing

changes because of a crucial move in the hidden innovation patterns. We have watched three such patterns,

including:

Scale: Data estimate develops at a disturbing rate, because of new sorts of social, business and scientific

applications, and the want to \never erase" information.

Heterogeneity: The blend of information composes put away on these capacity frameworks is winding up

progressively intricate, each having its own particular necessities and access designs. Combination:

Virtualization has empowered the union of various applications and their information onto less capacity servers.

These virtual machines (VMs) additionally show total information get to designs more perplexing than those

from singular customers do.

 Better outline of future stockpiling frameworks requires bits of knowledge into the changing access

designs because of these patterns. While past follow contemplates, have been utilized to determine information

get to designs, we trust that they have the accompanying deficiencies:

Uni-dimensional: Although existing strategies investigate numerous entrance qualities, they do as such each

one in turn, without uncovering cross-trademark conditions.

Predisposition: capacity framework originators searching for specific designs in light of earlier mental models

performed past investigations. This acquaints an inclination that requirements with be returned to in view of the

new innovation patterns.

Storage server centric: Past le system studies focused primarily on storage servers. This creates a critical

knowledge gap regarding client behaviour. To overcome these shortcomings, we propose a new design

methodology backed by the analysis of storage system traces. We present a method that simultaneously analyzes

multiple characteristics and their cross dependencies. We use a multi-dimensional, statistical correlation

technique, called k-mean, that is completely agnostic to the characteristics of each access pattern and their

dependencies. The K-means algorithm can analyze hundreds of dimensions simultaneously, providing added

objectivity to our analysis. To further reduce expertise bias, we involve as many relevant characteristics as

possible for each access pattern. In addition, we analyze patterns at different granularities (e.g., at the user

session, application, le level) on the storage server as well as the client, thus addressing the need for

understanding client patterns. The resulting design insights enable policies for building new storage systems.[1]

We analyze two recent network-attached storage le system traces from a production enterprise data centre. Table

1 summarizes our key observations and design implications; they will be detailed later in the chapter. Our

Methodology leads to observations that would be difficult to extract using past methods. We illustrate two such

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 98

access patterns, one showing the value of multi-granular analysis (Observation 1 in Table 1) and another

showing the value of multi-feature analysis.

Client side observations and design implications Server side observations and design implications

1. Client sessions with IO sizes > 128KB are read 7. Files with >70% sequential read or write have no re-

 only or write only.) Clients can consolidate peated reads or overwrites.) Servers should delegate

 Sessions based on only the read-write ratio. sequentially accessed les to clients to improve IO per-

 formance.

2. Client sessions with duration >8 hours do 8. Engineering les with repeated reads have random ac-

 10MB of IO.) Client caches can already t cesses.) Servers should delegate repeatedly read les
 an entire day's IO. to clients; clients need to store them in ash or memory.

3. Number of client sessions drops o linearly by 9. Most les are active (have opens, IO, and metadata ac-

 20% from Monday to Friday.) Servers can get cess) for only 1-2 hours in a few months.) Servers can
 an extra \day" for background tasks by running use le idle time to compress or deduplicate to increase

 at appropriate times during week days. storage capacity.

4. Applications with <4KB of IO per le open and 10. All les have either all random access or >70% sequen

 many opens of a few les do only random IO. tial access. (Seen in past studies too)) Servers can

) Clients should always cache the first few KB select the best storage medium for each le based on

 of IO per le per application. only access sequentiality.

5. Applications with >50% sequential read or 11. Directories with sequentially accessed les almost al-

 write access entire les at a time.) Clients ways contain randomly accessed les as well.) Servers

 can request le pre-fetch (read) or delegation can change from per-directory placement policy (de-

 (write) based on only the IO sequentiality. fault) to per- le policy upon seeing any sequential IO

 to any les in a directory.

6. Engineering applications with >50% sequential 12. Some directories aggregate only les with repeated

 read and sequential write are doing code com- reads and overwrites.) Servers can delegate these

 pile tasks, based on le extensions.) Servers directories entirely to clients, tradeo s permitting.

 can identify compile tasks; server should cache

 the output of these tasks.

Table 1: Summary of design insights, separated into insights derived from client access patterns and server

access patterns. The workload analysis gives us high confidence that the proposed improvements will bring a

benefit. We defer to future work the implementation of these system changes and the quantisation of

performance gains per workload

First, we observe (Observation 1) that sessions with more than 128KB of data reads or writes are either

read-only or write-only. This observation affects shared caching and consolidation policies across sessions.

Specifically, client OSs can detect and co-locate cache sensitive sessions (read-only) with cache insensitive

sessions (write-only) using just one parameter (read-write ratio). This improves cache utilization and

consolidation (in-creased density of sessions per server).

Similarly, we observe (Observation 8) that les with >70% sequential read or sequential write have no

repeated reads or overwrites.[2] This access pattern involves four characteristics: read sequentiality, write

sequentiality, repeated read behaviour, and over-write behaviour. The observation leads to a useful policy:

sequentially accessed les do not need to be cached at the server (no repeated reads), which leads to an efficient

buffer cache.

These observations illustrate that our methodology can derive unique design implications that leverage

the correlation between different characteristics. To summarize, our contributions are:

Identify storage system access patterns using a multi-dimensional statistical analysis technique. Build a

framework for analyzing traces at different granularity levels at both server and client. Analyze our specific

traces and present the access patterns identified. Derive design implications for various storage system

components from the access patterns.

Traces and Methodology Extensions

 In this section, we describe our analysis method in detail. We start with a description of the traces we

analyzed, followed by a description of the access units selected for our study. Next, we describe key steps in our

analysis process, including selecting the right features for each access unit, using the k-means data clustering

algorithm to identify access patterns, and additional information needed to interpret and generalize the results.

Traces Analyzed

 We collected Common Internet File System (CIFS) traces from two large-scale, enterprise-class le

servers deployed at our corporate data centres. One server covers roughly 1000 employees in marketing, sales,

finance, and other corporate roles. We call this the corporate trace. The other server covers roughly 500

employees in various engineering roles. We call this the engineering trace.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 99

 The trace collecting infrastructure is described. The corporate trace rejects activities on 3TB of active

storage from 20th September, 2015 to 21
st
 November, 2015. It contains activity from many Windows

applications. The engineering trace reflects activities on 19TB of active storage from 10
th

 August, 2015 to 14
th

November, 2015. It interleaves activity from both Windows and Linux applications. In both cases, many clients

use virtualization technologies. Thus, we believe we have representative traces with regards to the technology

trends in scale, heterogeneity, and consolidation. Also, since protocol-independent users, applications, and

stored data remain the primary factors affecting storage system behaviour, we believe our analysis is relevant

beyond CIFS.

Session

 Deepest subtree A

App. Instance

Deepest subtree A/B

 File File

 App. Instance

File

App. Instance

File

Figure 1: Access units analyzed. At clients, each session contains many application instances. At servers, each

sub-tree contains many les

Access Units

We analyze access patterns at multiple access units at the server and the client. Selecting access units is

subjective. We chose access units that form clear semantic design boundaries. On the client side, we analyze

two access units:

Sessions: Sessions reflect aggregate behaviour of a user. A CIFS session is bounded by matching

session connect and logo requests. CIFS identifies it by a tuple | f client IP address, session IDg. Application

instance: Analysis at this level leads to application specific optimizations in client VMs. CIFS identifies each

application instance by the tuple – f client IP address, session ID, and process IDg.

We also analyzed file open-close, but obtained uninteresting insights. Hence, we omit that access unit in the

early part of our research work.

We also examined two server side access units:
File: Analyzing file level access patterns facilitates per- le policies and optimization techniques. Each file is

uniquely identified by its full path name.[3] Deepest sub tree: the directory path immediately containing the le

identifies this access unit. Analysis at this level enables per-directory policies.

shows the semantic hierarchy among different access units. At clients, each session contains many application

instances. At servers, each sub-tree contains many files.

Figure 2: Methodology overview. The two-way arrows and the loop from Step 2 through Step 5 indicate our

much iteration between the steps

Analysis Process

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 100

Our method (Figure 2) involves the following steps:

1. Collect network storage system traces.

2. De ne the descriptive features for each access unit. This step requires domain knowledge about storage

systems.

3. Extract multiple instances of each access unit, and compute from the trace the corresponding numerical

feature values of each instance.

4. Input those values into k-means, a multi-dimensional statistical data clustering technique.

5. Interpret the k-means output and derive access patterns by looking at only the relevant subset of features. This

step requires knowledge of both storage systems and statistics. We also need to extract considerable additional

information to support our interpretations.

6. Translate access patterns to design insights.

We give more details about Steps 2, 4, and 5 in the following subsections.

Selecting features for each access unit

Choosing the arrangement of engaging highlights for each entrance unit requires area information

about capacity frameworks (Step 2 in Figure 2). It likewise presents some subjectivity, since the

selection of highlights restricts how one access example can vary from another. The human fashioner needs to

choose some essential highlights at first, e.g., add up to IO size and read-compose proportion for a le.

We won't know whether we have a decent arrangement of highlights until the point that we have

finished the whole investigation process. On the off chance that the investigation comes about abandon some

plan decision ambiguities; we have to add new highlights to elucidate those ambiguities, again utilizing space

information. For instance, for the most profound sub trees, we figure different percentiles (25th, 50th, and 75th)

of specific highlights like read-compose proportion in light of the fact that the normal incentive for those

highlights did not plainly isolate the entrance designs.

 We at that point rehash the examination procedure utilizing the new list of capabilities. This iterative

procedure prompts a long list of capabilities for all entrance units, fairly decreasing the subjective inclination of

a little list of capabilities. We list the picked highlights for each entrance unit.

The greater part of the highlights utilized as a part of our investigations are clear as crystal. Some

questionable or complex highlights require exact definitions, for example,

I/O: We utilize I/O" as a substitute for read and compose" Successive processes or composes: We

consider two read or composes solicitations to be consecutive in the event that they are back to back in time, and

the le o set + ask for size of the principal ask for measures up to the le o set of the second demand. A solitary

read or compose ask for is by definition not consecutive.

Rehashe peruses or overwrites: We track gets to at 4KB piece limits inside a le, with the o set of the

principal square being zero. A read is viewed as rehashed on the off chance that it gets to a piece that has been

perused in the past half hour. We utilize an identical definition for overwrites.

Identifying access designs through k-implies

A key piece of our system is the k-implies multi-dimensional connection calculation. We utilize it to

recognize get to designs at the same time crosswise over numerous highlights (Step 4 in Figure 2). The research

work shows that k-implies a notable, factual relationship algorithm. It identifies sets of information focuses that

gather around a locale in n-dimensional space. These assemblies are called groups.

For each entrance unit, we separate different cases of it from the follow, i.e., all session examples,

application occasions, les, and indexes. For each occasion, we process the numerical estimations of every one of

its highlights. This gives us an information exhibit in which each line compares to an occurrence, i.e., an

information point, and every segment relates to an element, i.e., a measurement. We input the exhibit into k-

implies, and the calculation finds the regular groups over all information focuses. We consider all information

focuses in a bunch as having a place with a solitary comparability class, i.e., a solitary access design. The

numerical estimations of the bunch focuses show the qualities of each entrance design.[4]

We pick k-implies for two reasons. Initially, k-implies is algorithmically straightforward. This permits

fast handling on extensive informational collections. We utilized a modified rendition of the k-implies C library,

in which we made some minor alters to constrain the memory impression when preparing huge information

sizes. Second, k-implies prompts instinctive names of the bunch focuses. This causes us decipher the

measurable conduct separated from the follows into unmistakable bits of knowledge. Subsequently, we lean

toward k-intends to other bunching calculations, for example, various levelled grouping and k-implies

subordinates.

K-implies expects us to determine k, the quantity of bunches. This is a di faction errand since we don't

have the foggiest idea about from the earlier the quantity of natural" bunches in the information. As part of this

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 101

research work, we utilize a standard strategy to set k: increase k until there is lessening rate in the abatement of

intra-bunch fluctuation, i.e., remaining change. Additional points of interest of the procedure shows up.

We get a subjective measure of the clearness of bunch limits by taking a gander at the re-task of

information focuses as we augment k. On the off chance that the bunches limits are clear, i.e., the information

focuses fall into characteristic groups, at that point augmenting k would prompt a solitary group split into two,

and the information focuses in alternate groups stay stationary. Then again, indistinct bunch limits are

demonstrated by N to N + 1 improvements in information focuses with N 2. The bunch limits are clear for every

one of the outcomes exhibited in this research work. There are maybe a couple occurrences of a twofold split,

i.e., two bunches split into three, however every one of the three of the groups are saved when we facilitate

increase k. Such a circumstance speaks to three generally equidistant common bunches being identified. In total,

clear group limits would be demonstrated by a tree-like structure in the development of information focuses as

we increment k. Figure 3 shows such a graphical portrayal, to the point that incorporates a twofold split. We

verified that such a tree-like structure exists for all the k-implies comes about displayed in this part.

Interpreting and summing up the outcomes

The k-implies calculation gives us an arrangement of access designs with different attributes. We

require extra data to comprehend the significance

of the outcomes. This information originates from processing different optional information outside of

k-implies examination. We assembled the begin and end times of every session occurrence, amassed by times of

the day and days of the week. This gave us knowledge into how clients dispatch and end sessions.

We inspect rename augmentations of les related with each entrance design having a place with these

entrance units: application occasions, les, and most profound sub-trees. This information interfaces the entrance

examples to all the more effortlessly conspicuous le augmentations. We perform connection examination

between the le and most profound sub-trees get to units. Specifically, we register the quantity of les of every le

get to design that is situated inside registries in each most profound sub-tree get to design. This data catches the

associations of les in registries. Such data gives us a point by point picture about the semantics of the entrance

designs, bringing about human reasonable marks to the entrance designs. Such marks enable us to make an

interpretation of perceptions to plan suggestions.

Besides, subsequent to distinguishing the plan suggestions, we investigate if the outline in-sights can be

extrapolated to other follow periods and other stockpiling framework utilize cases. We achieve this by rehashing

our correct investigation over numerous subsets of the follows, for instance, seven days of follows at once. This

enable us to analyze how our examination would be different had we acquired just seven days' follow. Access

patterns that are consistent, stable across different weeks would indicate that they are likely to be more general

than just our tracing period or our use cases.

(a). Descriptive features for each session

Duration Avg. time between I/O requests Unique trees accessed

Total I/O size Read sequentiality File opens

Read:write ratio by bytes Write sequentiality Unique les opened

Total I/O requests Repeated read ratio Directories accessed

Read:write ratio by requests Overwrite ratio Application instances seen

Total metadata requests Tree connects

(b). Corporate session Full Half day Short Short Support- Support-

access patterns day Content content content ing meta- ing read-

 work Viewing viewing generate data write

% of all sessions 0.5% 0.7% 1.2% 0.2% 96% 1.4%

Duration 8 hrs 4 hrs 10 min 70 min 7 sec 10 sec

Total I/O size 11 MB 3 MB 128 KB 3 MB 0 420 B

Read:write ratio by bytes 3:2 1:0 1:0 0:1 0:0 1:1

Metadata requests 3000 700 230 550 1 20

Read sequentiality 70% 80% 0% - - 0%

Write sequentiality 80% - - 90% - 0%

File opens: les 200:40 80:15 30:7 50:15 0:0 6:3

Tree connect:Trees 5:2 3:2 2:2 2:2 1:1 2:2

Directories accessed 10 7 4 6 0 2

Application instances 4 3 2 2 0 1

(c). Engineering session Full Human App. Short Support- Machine

access patterns day edit small generated content ing meta- generated

 work Les backup generate data update

% of all sessions 0.4% 1.0% 4.4% 0.4% 90% 3.6%

Duration 1 day 2 hrs 1 min 1 hr 10 sec 10 sec

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 102

Total I/O size 5 MB 5 KB 2 MB 2 MB 0 36 B

Read:write ratio 7:4 1:1 1:0 0:1 0:0 1:0

Metadata requests 1700 130 40 200 1 0

Read sequentiality 60% 0% 90% - - 0%

Write sequentiality 70% 0% - 90% - -

File opens: les 130:20 9:2 6:5 15:6 0:0 1:1

Tree connect:Trees 1:1 1:1 1:1 1:1 1:1 1:1

Directories accessed 7 2 1 3 0 1

Application instances 4 2 1 1 0 1

Table 2: Session access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions

of sessions in each access pattern; listing only the features that help separate the access patterns

Client Side Access Patterns

This and the coming sections present the access patterns we identified and the accompanying design

insights. We discuss client and serve side access patterns. We also check if these patterns persist across time.

For each access unit, we list

the descriptive features (only some of which help separate access patterns), outline how we derived the

high-level name (label) for each access pattern, and discuss relevant design insights.

Sessions

Sessions reflect total conduct of human clients. We utilized 17 highlights to portray sessions (Table 2)

The corporate follow has 509,076 sessions, and the building follow has 232,033.

In Table 2, we give quantitative portrayals and short names for all the session get to designs. We get

the names from looking at the significant cannot highlights: term, read-compose proportion, and I/O measure.

We likewise took a gander at the total session begin and end times to get extra semantic learning about

each entrance design.[5] Figures 4 and 5 demonstrate the begin and end times for chosen session get to designs.

The begin times of corporate entire day work sessions compare precisely to the U.S. workday {9AM begin,

12PM lunch, 5PM end. Corporate substance age sessions demonstrate slight increment at night and towards

Friday, showing hurries to meet day by day or week after week due dates. In the building follow, the

application-produced reinforcement and machine-created refresh sessions leave significantly from human

workday and work-week designs, driving us to name them as application and machine (customer OS) produced.

One shock was that the `supporting metadata' sessions represent >90% of all sessions in the two

follows. We trust these sessions are not humanly created. They last around 10 seconds, leaving brief period for

human intervened collaborations. Likewise, the session begin rate midpoints to approximately one for every

representative for each moment. We are sure that clients are not interfacing and logging o each moment of the

whole day. Be that as it may, the state of the begin

time charts has a solid connection with the human workday and work week. We call these supporting

metadata sessions {machine created in help of human client exercises. These metadata sessions shape a kind of

\background clamor" to the capacity framework. We watch a similar foundation clamor at different layers both

at customers and servers.

Perception 1: The sessions with I/O sizes more prominent than 128KB are either perused just or

compose, aside from the entire day work sessions (Table 2). These perceptions compare to the \half day content

review," short substance seeing," and short con-tent produce" sessions in the corporate follow, and application

created reinforcement" and short content create" sessions in the designing follow. Among these sessions, just

read-just sessions use buffer store for rehashed peruses and pre-fetches.

Compose just sessions just utilize the store to buffer composes. In this manner, on the off chance that

we have a reserve expulsion strategy that perceives their compose just nature and discharges the buffers

promptly on using filthy information, we can fulfill numerous compose just sessions with moderately little

buffer store space. We can accomplish better union and buffer store use by dealing with the proportion of co-

found read-just and compose just sessions. Virtualization directors and customer working frameworks to deal

with a mutual buffer store between sessions can utilize this knowledge. Perceiving such read-just and compose

just sessions is simple. Analyzing a session's aggregate perused estimate and compose measure uncovers their

read-just or compose just nature. Suggestion 1: Clients can combine sessions efficiently construct just with

respect to the read-compose proportion.

Observation 2: The full-day work" sessions do 10MB of I/O (Table 2). This means that a client cache

of 10s of MB can t the working set of a day for most sessions. Given the growth of ash devices on clients for

caching, despite large-scale consolidation, clients should easily cache a day's worth of data for all users. In such

a scenario, most I/O requests would be absorbed by the cache, reducing network latency and bandwidth

utilization, and load on the server. Moreover, complex cache eviction algorithms are unnecessary. Implication 2:

Clients caches can already t an entire day's I/O.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 103

Perception 3: The quantity of human-produced sessions and supporting session’s tops on Monday and

abatements consistently to 80% of the top on Friday (Figure 3). There is extensive slack" in the server stack

amid nights, lunch times, and not withstanding amid working hours. This infers the server can perform

foundation errands, for example, consistency checks, upkeep, or pressure/deduplication, at suitable

circumstances amid the week. A basic tally of dynamic sessions can fill in as a viable begin and stop flag. By

figuring the zone under the bend for session begin times by days of the week, we gauge that foundation

undertakings can crush out approximately one additional day of preparing without changing the pinnacle request

on the framework. This is a half change over a setup that performs foundation undertakings just amid ends of

the week. In the building follow, the application produced reinforcement or duplicate sessions appear to have

been as of now outlined along these lines. Suggestion 3: Servers get an additional day" for foundation errands

by running them at proper circumstances amid week-days.

Figure 3: Graphical Representations of Human Produced Periodical Sessions

Application instances

 Application instance access patterns reflect application behaviour, facilitating application specific

optimizations. We used 16 features to describe application instances (Table 3). The corporate trace has 138,723

application instances, and the engineering trace has 741,319.

Table 3 provides quantitative descriptions and short names for all the application instance access patterns. We

derive the names from examining the read-write ratio, I/O size, and le extensions accessed (Figures 6 and 7).

(a). Descriptive features for each application instance

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 104

Total I/O size Read sequentiality File opens

Read:write ratio by bytes Write sequentiality Unique les opened

Total I/O requests by bytes Repeated read ratio Directories accessed

Read:write ratio by requests Overwrite ratio File extensions accessed

Total metadata requests Tree connects

Avg. time between I/O requests Unique trees accessed

(b). Corp. app. instance Viewing app Support- App gen- Viewing hu- Content

access patterns generated ing meta- erated le man genera- update

 content data updates ed content app

% of all app instances 16% 56% 14% 8.8% 5.1%

Total I/O 100 KB 0 1 KB 800 KB 3.5 MB

Read:write ratio 1:0 0:0 1:1 1:0 2:3

Metadata requests 130 5 50 130 500

Read sequentiality 5% - 0% 80% 50%

Write sequentiality - - 0% - 80%

Overwrite ratio - - 0% - 5%

File opens: les 19:4 0:0 10:4 20:4 60:11

Tree connect:Trees 2:2 0:0 2:2 2:2 2:2

Directories accessed 3 0 3 3 4

File extensions accessed 2 0 2 2 3

(c). Eng. app. instance Compilation Support- Content up- Viewing hu- Content

access patterns app ing meta- date app - man genera- viewing

 data small content app - small

% of all app instances 1.6% 93% 0.9% 2.0% 2.5%

Total I/O 2 MB 0 2 KB 1 MB 3 KB

Read:write ratio 9:1 0:0 0:1 1:0 1:0

Metadata requests 400 1 14 40 15

Read sequentiality 50% - - 90% 0%

Write sequentiality 80% - 0% - -

Overwrite ratio 20% - 0% - -

File opens: les 145:75 0:0 3:1 5:4 2:1

Tree connect:Trees 1:1 0:0 1:1 1:1 1:1

Directories accessed 15 0 1 1 1

File extensions accessed 5 0 1 1 1

Table 3: Application instance access patterns. (a): Full list of descriptive features. Almost identical to those for

user sessions, with a new feature \ le extensions accessed", and two features no longer applicable | \duration"

and \application instances seen". (b) and (c): Short names and descriptions of application instances in each

access pattern; listing only the features that help separate the access patterns

We see again the metadata background noise. The supporting metadata application instances account

for the largest fraction, and often do not even open a le. There are many les without a le extension, a

phenomenon also observed in recent storage system snapshot studies. We notice that le extensions turn out to be

poor indicators of application instance access patterns. This is not surprising because we separate access patterns

based on read/write properties. A user could either view doc or create a .doc. The same application software has

different read/write patterns. This speaks to the strength of our multi-layer framework. Aggregating I/O by

application instances gives clean separation of patterns; while aggregating just by application software or le

extensions will not.[6]

We also find it interesting that most le extensions are immediately recognizable. This means that what

people use network storage systems for, i.e., the le extensions, remains easily recognizable, even though how

people use network storage systems, i.e., the access patterns, is ever changing and becoming more complex.

Observation 4: The small content viewing" and content update" application in-stances have <4KB total

reads per le open and access a few unique les many times (Table 3). The small read size and multiple reads from

the same les means that clients should pre-fetch and place the les in a cache optimized for random access (ash

SS-D memory). The trend towards ash caches on clients should enable this transfer.

Application instances have bi-modal total I/O size - either less than 10KB, or 100KB-10MB. Thus, a

simple cache management algorithm success; we always keep the first 2 blocks of 4KB in cache. If the

application instance does more I/O, it is likely to have I/O size in the 100KB-1MB range, so we evict it from the

cache. We should note that such a policy makes sense even though we proposed earlier to cache all 11MB of a

typical day's working set - 11MB of cache becomes a concern when we have many consolidated clients.

Implication 4: Clients should always cache the first few KB of I/O per le per application.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 105

Figure 4: File extensions for corporate application instance access patterns. For each access pattern (column),

showing the fraction of the two most frequent le extensions that are accessed together within a single application

instance. \n.f.e." denotes les with no le extension". Application instances labelled with just one le extension

accessed les with only one extension.

Observation 5: We see >50% sequential read and write ratio for the content update" applications

instances for corporate and the content viewing" applications instances for human-generated content for both

corporate and engineering (Table 3). Dividing the total I/O size by the number of le opens suggest that these

application instances are sequentially reading and writing entire les force productivity (.xls, .doc, .ppt, .pdf) and

multimedia applications.

This infers the les related with these applications ought to be pre gotten and designated to the customer.

Pre bringing implies conveying the entire le to the customer before the entire le is asked. Designation implies

giving a customer brief, restrictive access to a le, with the customer occasionally synchronizing to server to

guarantee information toughness. CIFS does assignment utilizing deft locks, while NFSv4 has a committed

activity for appointment. Pre getting and assignment of such les will enhance read and compose execution, bring

down system activity, and relieve server burden.[7]

The entrance designs again offer a straightforward, edge based choice calculation. On the off chance

that an application example accomplishes more than 10s of KB of successive I/O, and has no overwrite, at that

point it is probably going to be a substance survey or refresh application case; such les are pre-fetched and

assigned to the customers. Suggestion 5: Clients can ask for le pre-fetch (read) and designation (compose) in

view of just I/O sequentiality.

Perception 6: Engineering applications with >50% successive peruses and >50% sequential composes

are doing code assemble undertakings. We know

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 106

this from taking a gander at the le augmentations in Figure 4. These incorporate procedures indicate

read sequentiality, compose sequentiality, a huge overwrite proportion and huge number of metadata

demands.[9] They depend on the server intensely for information gets to. We require more nitty gritty customer

side data to comprehend why customer stores are ineffectual for this situation. In any case, unmistakably the

server reserve needs to pre bring the read les for these applications. The high percent-period of consecutive

peruses and composes gives us another limit based calculation to recognize these applications. Suggestion 6:

Servers can measurably distinguish assemble undertakings by the nearness of both successive peruses and

composes; server needs to reserve the yield of these errands.

1

others

 n.f.e.

0.8

others

others

 others

 others

 d + h

pdf

0.6

 n.f.e. +

tmp

bmp

h + d

txt

 h + dbo n.f.e. + xls

no files

opened

0.4

n.f.e.

txt

h + c

 n.f.e.

 pst

rnd

0.2

 jpg

rnd

h + o

0

xls + n.t.e.

compilation

app supporting content update

content

viewing

content

viewing

 metadata app - small app - human app - small

 generated

 content

Figure 5: File extensions for engineering application instance access patterns. For each access pattern (column),

showing the fraction of the two most frequent le extensions that are accessed together within a single application

instance. \n.f.e." denotes les with no le extension". Application instances labelled with just one le extension

accessed les with only one extension.

Server Side Access Patterns

As specified, we dissected two sorts of server side access units: les and most profound sub-trees.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 107

Files

Document get to designs help stockpiling server fashioners create per-le position and optimization

strategies. We utilized 25 highlights to depict les (Table 4). Note that a portion of the highlights incorporate

different percentiles of a trademark, e.g., read ask for estimate as percentiles of all read demands. We think

including different percentiles instead of simply the normal would permit better partition of access designs. The

corporate follow has 1,155,099 les, and the building follow has 1,809,571.

In Table 4, we show quantitative depictions and short names for all the le get to designs. Figures 8 and

9 give the most widely recognized le augmentations in each. [10] We inferred the names by analyzing the read-

compose proportion and I/O measure. For the building follow, inspecting the le expansions likewise

demonstrated helpful, prompting names, for example, edit code and aggregate yield", and read-just log

reinforcement".

 We see that there are groupings of les with comparative expansions. For instance, in the corporate

follow, the little irregular read get to designs incorporate numerous le augmentations associated with web

program stores. Additionally, multi-media les like .mp3 and .jpg assemble in the successive read and compose

get to designs. In the designing follow, code libraries bunch under the consecutive compose les, and read just

log reinforcement les contain le extensions .0 to .99. Be that as it may, the most widely recognized le

augmentations in each follow still spread crosswise over numerous entrance designs, e.g., office profitability les

in the corporate follow and code les in the building follow. Observation 7: For les with >70% sequential reads or

sequential writes, the repeated read and overwrite ratios are close to zero (Table 4). This implies that there is

little benefit in caching these les at the server. They should be pre-fetched as a whole and delegated to the

client.[11]

(a). Descriptive features for each le
 Number of hours with 1, 2-3, or 4 le opens Read sequentiality

 Number of hours with 1-100KB, 100KB-1MB, or >1MB reads Write sequentiality

 Number of hours with 1-100KB, 100KB-1MB, or >1MB writes Read:write ratio by bytes

 Number of hours with 1, 2-3, or 4 metadata requests Repeated read ratio

 Read request size - 25th, 50th, and 75th percentile of all requests Overwrite ratio

 Write request size - 25th, 50th, and 75th percentile of all requests

 Avg. time between I/O requests - 25th, 50th, and 75th percentile of all request pairs

 (b). Corp. le Metadata Sequent- Sequent- Small Smallest Small

 access patterns only ial write ial read random random random

 write read read

 % of all les 59% 4.0% 4.1% 4.7% 19% 9.2%

 # hrs with opens 2hrs 1hr 1hr 1hr 1hr 1hr

 Opens per hr 1 open 2-3 opens 2-3 opens 2-3 opens 1 open 1 open

 # hrs with reads 0 0 1hr 0 1hr 1hr

 Reads per hr - - 100KB-1MB - 1-100KB 1-100KB

hrs with writes 0 1hr 0 1hr 0 0

 Writes per hr - 100KB-1MB - 1-100KB - -

 Read request size - - 4-32KB - 2KB 32KB

Write request size - 60KB - 4-22KB - -

Read sequentiality - - 70% - 0% 0%

Write sequentiality - 80% - 0% - -

 Read:write ratio 0:0 0:1 1:0 0:1 1:0 1:0

 (c). Eng. le Metadata Sequent- Small Edit Sequent- Read-

 access patterns only ial write random code & tial read only log/

 read compile backup

 % of all les 42% 1.9% 32% 7.3% 8.3% 8.1%

 # hrs with opens 1hr 1hr 1hr 1hr 1hr 2hrs

 Opens per hr 1 open 2-3 opens 2-3 opens 2-3 opens 2-3 opens 2-3 opens

 # hrs with reads 0 0 1hr 1hr 1hr 2hrs

 Reads per hr - - 1-100KB 1-100KB 1-100KB 1-100KB

hrs with writes 0 1hr 0 0 0 0

 Writes per hr - >1MB - - - -

 Read request size - - 3-4KB 4KB 8-16KB 1KB

Write request size - 64KB - - - -

Read sequentiality - - 0% 0% 70% 0%

Write sequentiality - 90% - - - -

Repeated read ratio - - 0% 50% 0% 0%

 Read:write ratio 0:0 0:1 1:0 1:0 1:0 1:0

Table 4: File access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions of

les in each access pattern; listing only the features that help separate the access patterns

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 108

Once more, the bimodal I/O sequentiality offers a basic calculation for the server to identify which les

ought to be pre-brought and assigned { if a le has any successive access, it is probably going to have a high level

of consecutive access, hence it ought to be pre-fetched and designated to the customer. Future stockpiling

servers can recommend such data to customers, prompting assignment demands. Suggestion 7: Servers should

assign successively got to les to customers to enhance I/O execution.

Perception 8: In the building follow, just the alter code and incorporate yield les have a high % of

rehashed peruses (Table 4). Those les ought to be assigned to the customers also. The rehashed peruses don't

appear in the building application examples, potentially on the grounds that an assemblage procedure dispatches

numerous kid forms over and again perusing similar les. Every tyke procedure peruses \fresh information,"

despite the fact that the server sees rehashed peruses. With bigger memory or powder reserves at customers,[12]

we anticipate that this conduct will drop. The working set issues that prompt this situation need to be analyzed.

On the off chance that the rehashed peruses originate from a solitary customer, at that point the server can

recommend that the customer reserve the proper les.

We can again utilize an edge based calculation. Recognizing any rehashed peruses at the server flags

that the le ought to be assigned to the customer. Even from a pessimistic standpoint, just the first few peruses

will hit the server. Consequent rehashed peruses are ceased at the customer. Suggestion 8: Servers should

appoint over and over read les to customers.

We can again utilize a limit based calculation. Recognizing any rehashed persuals at the server flags

that the le ought to be appointed to the customer. Best case scenario, just the first few peruses will hit the server.

Resulting rehashed peruses are ceased at the customer. Suggestion 8: Servers should assign over and again read

les to customers.

Perception 9: Almost all les are dynamic (have opens, I/O, and metadata access) for just 1-2 hours over

the whole follow period, as demonstrated by the run of the mill opens read compose action of all entrance

designs (Table 4). There are some consistently got to les, yet they are few to the point that they don't influence

the k-implies examination. The absence of standard access for most les implies that there is space for the server

to utilize procedures to build limit by doing compaction on sit still les.[13]

Basic procedures incorporate deduplication and pressure. The movement on these les demonstrate that

the I/O execution effect ought to be little. Regardless of whether run continually, compaction has a low

likelihood of influencing a dynamic le. Since normal libraries like gzip enhance for decompression,

decompressing les at read time ought to have just slight execution affect. Suggestion 9: Servers can utilize le sit

without moving time to pack or deduplicate information to expand capacity limit.

Figure 6: File extensions for corporate les. Fraction of le extensions in each le access pattern

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 109

Observation 10: All les have either all random access or >70% sequential access (Table 4). The small

random read and write les in both traces can benefit from being placed on media with high random access

performance, such as solid state drives (SSDs). Files with a high percentage of sequential accesses can reside on

traditional hard disk drives (HDDs), which already optimize for sequential access. The bimodal I/O

sequentiality offers yet another threshold-based placement algorithm { if a le has any sequential access, it is

likely to have a high percentage of sequential access; therefore place it on HDDs. Otherwise, place it

on SSDs. We note that there are more randomly accessed les than sequentially accessed les.[14] Even though

sequential les tend to be larger, we still need to do a working set analysis to determine the right size of server

SSDs for each use case. Implication 10: Servers can select the best storage medium for each le based only on

access sequentiality.

Figure 7: File extensions for engineering les. Fraction of le extensions in each le access pattern

Deepest sub trees

Deepest sub tree access patterns help storage server designers develop per-directory policies. We use

the phrase \deepest sub tree" as a more precise alternative to directories". In particular, for hierarchical directory

structures

of the form A/B, data accesses to les A/file are counted as deepest sub tree A, while data accesses to les

A/B/file are counted separately as deepest sub tree A/B.

We used 40 features to describe deepest sub trees (Table 5). Some of the features include different

percentiles of a characteristic, e.g., per le read sequentiality as percentile of all les in a directory. Including

different percentiles rather than just the average allows better separation of access patterns. The corporate trace

has 117,640 deepest sub trees, and the engineering trace has 161,858.

In Table 5.5, we provide quantitative descriptions and short names for all the deepest

(a). Descriptive features for each subtree

Number of hours with 1, 2-3, or 4 le opens

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 110

Number of hours with 1-100KB, 100KB-1MB, or >1MB reads

Number of hours with 1-100KB, 100KB-1MB, or >1MB writes

Number of hours with 1, 2-3, or 4 metadata requests

Read request size - 25th, 50th, and 75th percentile of all requests Write request size - 25th, 50th, and 75th

percentile of all requests

Avg. time between I/O requests - 25th, 50th, and 75th percentile of all request pairs

Read sequentiality - 25th, 50th, and 75th percentile of les in the subtree, and aggregated across all les

Write sequentiality - 25th, 50th, and 75th percentile of les in the subtree, and aggregated across all les

Read:write ratio - 25th, 50th, and 75th percentile of les, and aggregated across all les

Repeated read ratio - 25th, 50th, and 75th percentile of les, and aggregated across all les

Overwrite ratio - 25th, 50th, and 75th percentile of les, and aggregated across all es

(b). Corp. subtree Temp Client Mixed Meta- Mixed Small

access patterns real cacheable read data write random

 data only read

% of all subtrees 2.3% 4.1% 5.6% 64% 3.5% 21%

hrs with opens 3hrs 3hrs 2hrs 2hrs 1hr 1hr

Opens per hr >4 opens 1 open 1 open 1 open >4 opens >4 opens

hrs with reads 3hrs 2hrs 1hr 0 0 1hr

Reads per hr 1-100KB 1-100KB 1-100KB - - 1-100KB

hrs with writes 2hrs 0 0 0 1hr 0

Writes per hr 0.1-1MB - - - >1MB -

Read request size 4KB 4-10KB 4-32KB - - 1-8KB

Write request size 4KB - - - 64KB -

Read sequentiality 10-30% 0% 50-70% - - 0%

Write sequentiality 50-70% - - - 70-80% -

Repeat read ratio 20-50% 50% 0% - - 0%

Overwrite ratio 30-70% - - - 0% -

Read:write ratio 1:0 to 0:1 1:0 1:0 0:0 0:1 1:0

(b). Eng. subtree Meta- Small Client Mixed Sequen- Temp

access patterns data random cacheable read tial real

 only read write data

% of all subtrees 59% 25% 6.1% 7.1% 1.9% 1.3%

hrs with opens 1hr 1hr 1hr 1hr 1hr 3hrs

Opens per hr 2-3 pens >4 opens >4 opens >4 opens >4 opens >4 opens

hrs with reads 0 1hr 1hr 1hr 0 3hrs

Reads per hr - 1-100KB 1-100KB 0.1-1MB - 1-100KB

hrs with writes 0 0 0 0 1hr 1hr

Writes per hr - - - - 0.1-1MB 1-100KB

Read request size - 1-4KB 2-4KB 8-10KB - 4-32KB

Write request size - - - - 32-60KB 4-60KB

Read sequentiality - 0% 0% 40-70% - 10-65%

Write sequentiality - - - - 70-90% 60-80%

Repeat read ratio - 0% 50-60% 0% - 0-40%

Overwrite ratio - - - - 0% 0-30%

Read:write ratio 0:0 1:0 1:0 1:0 0:1 1:0 to 0:1

Table 5: Deepest sub tree access patterns. (a): Full list of descriptive features. Compared with the features list in

Table 4, the changes are that read sequentiality, write sequentiality, read: write ratio, repeated read ratio, and

overwrite ratio changed from a single statistic for a le to 25th, 50th, and 75th percentile of all les aggregated in a

directory. (b) and (c): Short names and descriptions of sub trees in each access pattern; listing only the features

that help separate access patterns

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 111

Figure 8: File extensions for corporate deepest sub trees. Fraction of le extensions in deepest subtree access

patterns

For instance, the random read" and client cacheable" marks originate from taking a gander at the I/O

designs. Temporary indexes" represented the .tmp les in those directories. Mix read" and \mix express" catalogs

considered the nearness of both successive and arbitrarily got to les in those indexes.

The metadata foundation clamor stays unmistakable at the sub-tree layer. The spread of le

augmentations is like that for le get to designs {some le expansions assemble and others spread equitably.

Strangely, some sub trees have an expansive part of les for which just the metadata gets got to.

Some sub trees contain just les of a solitary access design (e.g., little arbitrary read sub trees in Figures

12). There, we can apply the outline bits of knowledge from the le get to examples to the whole sub tree. For

instance, the little arbitrary read sub trees can dwell on SSDs. Since there are a larger number of les than sub

trees, per-sub tree strategies can bring down the measure of approach data kept at the server.[15]

Interestingly, the blend read and blend compose registries contain both consecutive and randomly got

to les. Those sub trees require per-le approaches: Place the consecutively got to les on HDDs and the

haphazardly got to les on SSDs. Delicate connects to les can save the client confronting index association, while

enabling the server to advance per-le nutriment. The server ought to naturally choose when to apply per-le or

per-sub tree approaches.

Perception 11: Directories with successively got to les quite often contain haphazardly got to les

likewise (Figures 12 and 13). On the other hand, a few catalogs with arbitrarily get to les won't contain

consecutively got to les. In this manner, we can default all sub trees to per-sub tree arrangements.

Simultaneously, we track the I/O sequentiality per sub tree. On the off chance that the sequentiality is over some

edge, at that point the sub tree changes to per-le arrangements. Suggestion 11: Servers can change from per-

registry arrangement strategy (default) to per-le approach after observing any consecutive I/O to any les in an

index. with rehashed peruses or overwrites (Table 5 and Figures 12 and 13). Extra calculation demonstrated that

the rehashed peruses and overwrites quite often originate from a solitary customer. In this way, it is workable

for the whole catalog to be pre-brought and dele-gated to the customer. Designating whole registries can pre-

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 112

endeavour all gets to that are nearby to a catalog, however expends customer reserve space. We have to

comprehend the tradeoffs through a more inside and out working set and transient area investigation at both the

le and most profound sub tree levels. Suggestion 12: Servers can designate rehashed read and overwrite catalogs

totally to customers, tradeoffs following.

Figure 9: File extensions for engineering deepest sub trees. Fraction of le extensions in deepest sub tree access

patterns

Architectural Trends

It offered many specific optimizations for placement, caching, delegation, and consolidation decisions.

We combine the insights here to speculate on the architecture of future enterprise storage systems.[18]

We see a clear separation of roles for clients and servers. The client design can target high I/O

performance by a combination of efficient delegation, pre-fetching and caching of the appropriate data. The

servers should focus on increasing their aggregated efficiency across clients: collaboration with clients (on

caching, delegation, etc.) and exploiting user patterns to schedule background tasks. Automating background

tasks such as online data de-duplication delivers capacity savings in a timely and hassle-free fashion, i.e.,

without system downtime or explicit scheduling. Regarding caching at the server,[19] we observe that very few

access patterns suggest how to improve server's buffer cache for data accesses. Design insights 4-6, 8 and 12

indicate a heavy role for the client cache and Design insight 7 suggests how not to use the server buffer cache -

caching metadata only and acting as a warm/backup cache for clients would result in lower latencies for many

access patterns.

We also see simple ways to take advantage of new storage media such as SSDs. The clear identification

of sequential and random access le patterns enables efficient device-specific data placement algorithms (Design

insights 10 and 11). Also, the background metadata noise seen at all levels suggests that storage servers should

both optimize for metadata accesses and redesign client-server interactions to decrease the metadata chatter.

American Journal of Engineering Research (AJER) 2018

w w w . a j e r . o r g

Page 113

Depending on the growth of metadata and the performance requirements, we also need to consider placing

metadata on low latency, non-volatile media like ash or SSDs.

 Furthermore, we believe that storage systems should introduce many monitoring points to dynamically

adjust the decision thresholds of placement, caching, or consolidation policies. We need to monitor both clients

and servers. For example, when repeated read and overwrite les have been properly delegated to clients, the

server would no longer see les with such access patterns.[20] Without monitoring points at the clients, we would

not be able to quantify the le delegation benefits. Storage systems should make extensible tracing APIs to

expedite the collection of long-term future traces. This will facilitate future work similar to ours.

III. RESULTS & CONCLUSION

We must address the storage technology trends toward ever-increasing scale, heterogeneity, and

consolidation. Current storage design paradigms that rely on existing trace analysis methods are ill equipped to

meet the emerging challenges because they are uni dimensional, focus only on the storage server, and are

subject to designer bias. We showed that a multi-dimensional, multi-layered trace-driven design methodology

leads to more objective design points with highly targeted optimizations at both storage clients and servers.

Using our corporate and engineering use cases, we present a number of insights that inform future designs. We

described in some detail the access

patterns we observed, and we encourage fellow storage system designers to extract further insights

from our observations.

Storage system designers face an increasing challenge to anticipate access patterns. This chapter builds

the case that system designers can no longer accurately anticipate access patterns using intuition only. We

believe that the corporate and engineering traces from the NetApp corporate headquarters would have similar

use cases at other traditional and high-tech businesses. Other use cases would require us to perform the same

trace collection and analysis process to extract the same kind of empirical insights. We also need similar studies

at regular intervals to track the evolving use of storage system. We hope that this chapter contributes to an

objective and principled design approach targeting rapidly changing data access patterns.

In the broader context of the dissertation, the analysis here and in applies the methodology presented

into helps us understand the behaviour of different kinds of large-scale data-centric systems. The subsequent

chapters leverage the workload insights developed thus far to solve some system design problems beyond those

that immediately follow from the workload behaviour observations. Specifically, seeks to improve Map Reduce

energy efficiency. quantities the performance implications of TCP in cast. While these two design problems are

not immediately related to workload management, an understanding of workload behaviour is vital to

developing a solution.

REFERENCES:
[1]. ApacheHadoopDocumentation.http://hadoop.apache.org/common/docs/r0.20.2/cluster_setup.html#Configuring+the+Hadoop

+Daemons.

[2]. Apache Oozie(TM) Work flow Scheduler for Hadoop. http://incubator.apache. org/oozie/.Grid mix. HADOOP-

HOME/src/benchmarks/grid mix in all recent Hadoop distributions.
[3]. Gridmix3. HADOOP-HOME/map red/src/contrib/grid mix in Hadoop 0.21.0 on-wards.

[4]. Hadoop. http://hadoop.apache.org.Hadoop Power-By Page. http://wiki.apache.org/hadoop/PoweredBy.Hadoop World 2011

Speakers. http://www.hadoopworld.com/speakers/.
[5]. HDFS Architecture Guide. http://hadoop.apache.org/hdfs/docs/current/ hdfs_design.html.IEEE 802.1Qau Standard - Congestion

Notification. http://www.ieee802.org/ 1/pages/802.1au.html.

[6]. Mumak. http://issues.apache.org/jira/browse/MAPREDUCE-728, last retrieved Nov. 2009.Open Flow. http://www.openflow.org/.
[7]. Personal communications with Cloudera engineering and support teams.Sort benchmark home page.

http://sortbenchmark.org/.tcpdump. http://www.tcpdump.org/.

[8]. N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A Five-Year Study of File-System Metadata. In FAST 2007.

[9]. M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data centre network architecture. In SIGCOMM 2008.

[10]. M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data centre TCP

(DCTCP). In SIGCOMM 2010.
[11]. M. Alizadeh et al. Data centre transport mechanisms: Congestion control theory and IEEE standardization. In Annual Allerton

Conference 2008.

[12]. M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP's Loss Recovery Using Limited Transmit.
http://www.ietf.org/rfc/rfc3042.txt, 2001.

[13]. M. Allman, V. Paxson, and W. Stevens. Request for Comments: 2581 - TCP Congestion Control.

http://www.ietf.org/rfc/rfc2581.txt, 1999.

Ch.Dhanunjaya Rao "Large-Scale Data-Centric Systems – A Research Analysis "American

Journal of Engineering Research (AJER), vol. 7, no. 09, 2018, pp. 96-113

http://hadoop.apache.org/common/docs/r0.20.2/cluster_setup.html#Configuring+the+Hadoop+Daemons
http://hadoop.apache.org/common/docs/r0.20.2/cluster_setup.html#Configuring+the+Hadoop+Daemons
http://hadoop.apache.org/common/docs/r0.20.2/cluster_setup.html#Configuring+the+Hadoop+Daemons
http://incubator.apache.org/oozie/
http://incubator.apache.org/oozie/
http://www.hadoopworld.com/speakers/
http://hadoop.apache.org/hdfs/docs/current/hdfs_design.html
http://hadoop.apache.org/hdfs/docs/current/hdfs_design.html
http://www.ieee802.org/1/pages/802.1au.html
http://www.ieee802.org/1/pages/802.1au.html
http://www.openflow.org/
http://sortbenchmark.org/
http://www.ietf.org/rfc/rfc3042.txt
http://www.ietf.org/rfc/rfc2581.txt

