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ABSTRACT: An Artificial Neural Network (ANN) is an information processing system which is inspired by the 

way biological nervous systems, like the brain, process information. The key element of this paradigm is the 

novel structure of the information processing system. It is composed of a large number of highly interconnected 

processing elements (neurons) working together to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition or data classification, 

through a learning process.  This research work looks at the learning in biological systems as involves 

adjustments to the synaptic connections that exist between the neurons and its similarity with the ANNs 

paradigm. These biological methods of computing are considered to be the next major advancement in the 

Computing Industry, hence worthy of study. Systems combining both fuzzy logic and neural networks with their 

different architectures in different application areas are considered in this study. The neural network learns by 

adjusting its weights and bias (threshold) iteratively to yield desired output. These are also called free 

parameters. For learning to take place, the Neural Network is trained first. The training is performed using a 

defined set of rules also known as the learning algorithm. Neural networks should not, however, be heralded as 

a substitute for statistical modeling, but rather as a complementary effort or an alternative approach to fitting 

non-linear data. 
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I INTRODUCTION 

Artificial Neural Networks are electronic models based on the neural structure of the brain. The brain 

learns from experience. The most basic element of the human brain is a cell which, unlike the rest of the body, 

doesn't appear to regenerate. These cells are known as neurons. There are 100 billion of these cells in the brain 

and each can connect with up to 200,000 other neurons (Jain & Mao, 1996). There are multiple connections 

between them.  

The individual neurons are complicated. They have a myriad of parts, sub-systems, and control 

mechanisms. They convey information via a host of electrochemical pathways. Together these neurons and their 

connections form a process which is not binary, not stable, and not synchronous. The artificial neural networks 

try to replicate only the most basic elements of this complicated, versatile, and powerful organism. But for the 

software engineer who is trying to solve problems, neural computing was never about replicating human brains. 

It is about machines and a new way to solve problems. 

 

II ARTIFICIAL NEURAL NETWORK PROCESSING ELEMENTS 

The fundamental processing element of a neural network is a neuron. This building block of human 

awareness encompasses a few general capabilities. Basically, a biological neuron receives inputs from other 

sources, combines them in some way, performs a generally nonlinear operation on the result, and then outputs 

the final result. Fig. 1 shows the relationship of these four parts. 
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Fig. 1: Model of a Biological Neuron (Jain & Mao, 1996). 

 

These input channels receive their input through the synapses of other neurons. The soma then 

processes these incoming signals over time and then turns that processed value into an output which is sent out 

to other neurons through the axon and the synapses. Currently, the goal of Artificial Neural Networks is not to 

recreate the brain rather to engineer solutions to problems that have not been solved by traditional computing. 

Hence, the basic unit of Artificial Neural Networks (ANN), the artificial neurons, simulate the four basic 

functions of natural neurons (Sasikumar & Balakrushna, 2011). Fig. 2 shows a fundamental representation of an 

artificial neuron. 

 
Fig. 2: Model of Artificial Neuron (Renner and Lacher, 2000). 

 

𝐼 =   𝑤𝑖𝑥𝑗 −  𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛     𝑌 = 𝑓 𝑡 − 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

Where  Xo, X1, … Xn = Inputs ,   Wo, W1, … Wn = Weights  

In Fig. 2, various inputs to the network are represented by the mathematical symbol, xn. Each of these inputs are 

multiplied by a connection weight. These weights are represented by wn . In the simplest case, these products are 

simply summed, fed through a transfer function to generate a result, and then output. 

The mathematical representation of a neuron depicted above can be described as: 

𝑌 = 𝑓    𝑥𝑖

𝑛

𝑖=1

𝑤𝑖 + 𝑏 … . .…………………… . . .1 

where x1 , x2 ,....xn represent an input vector, and w1 , w2,....wn represent the weights (or strengths) of the 

incoming synapses (or interconnections). The bias (b) performs an affine transformation of the linearly 

combined input signals, and the activation function (f) applies to produce the final output (Y) from the neuron. 

Fig. 3 is a more detailed schematic of the artificial neuron. In Fig. 3, inputs enter into the processing element 

from the upper left. The first step is for each of these inputs to be multiplied by their respective weighting factor 

(wn). Then these modified inputs are fed into the summing function, which usually just sums these products. 

Yet, many different types of operations can be selected. These operations could produce a number of different 
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values which are then propagated forward; values such as the average, the largest, the smallest, the ORed values, 

the ANDed values, etc. Furthermore, most commercial development products allow software engineers to create 

their own summing functions via routines coded in a higher level language (C is commonly supported). 

Sometimes the summing function is further complicated by the addition of an activation function which enables 

the summing function to operate in a time sensitive way. Either way, the output of the summing function is then 

sent into a transfer function. This function then turns this number into a real output via some algorithm. It is this 

algorithm that takes the input and turns it into a zero or a one, a minus one or a one, or some other number. The 

transfer functions that are commonly supported are sigmoid, sine, hyperbolic tangent, etc. This transfer function 

also can scale the output or control its value via thresholds. The result of the transfer function is usually the 

direct output of the processing element (Dave and George, 1992). An example of how a transfer function works 

is shown in Fig. 4. This sigmoid transfer function takes the value from the summation function, called sum in 

the Fig.4, and turns it into a value between zero and one.  

 

 
 

 
Fig. 4: Sigmoid Transfer Function ((Agarwal et al., 2004)) 

 

Finally, the processing element is ready to output the result of its transfer function. This output is then 

input into other processing elements, or to an outside connection, as dictated by the structure of the network. All 

Artificial Neural Networks are constructed from this basic building block - the processing element or the 

Artificial Neuron. It is variety and the fundamental differences in these building blocks which partially cause the 

implementing of Neural Networks to be an "art." 
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III THE GENERAL STRUCTURE OF A NEURAL NETWORK MODEL 

The most commonly used structure is in the Fig. 5. The neural network model is formed in three layers, 

called the input layer X1, hidden layer X2, and output layer X3. Each layer consists of one or more nodes, 

represented in this diagram by the small circles. The lines between the nodes indicate the flow of information 

from one node to the next. In this particular type of neural network, the information flows only from the input to 

the output (that is, from left-to-right). The nodes of the input layer are passive, meaning they do not modify the 

data. They receive a single value on their input, and duplicate the value to their multiple outputs. In comparison, 

the nodes of the hidden and output layer are active. This means they modify the data. Each value from the input 

layer is duplicated and sent to all of the hidden nodes. This is called a fully interconnected structure. The values 

entering a hidden node are multiplied by weights, a set of predetermined numbers stored in the program. Before 

leaving the node, this number is passed through a nonlinear mathematical function called a sigmoid. This is an 

"s" shaped curve that limits the node's output. That is, the input to the sigmoid is a value between -∞ and +∞, 

while its output can only be between 0 and 1. The active nodes of the output layer combine and modify the data 

to produce the two output values of this network. 

 

 
Fig. 5: Sample ANN Model (Aigbe, P.E., 2008). 

 

IV COMPONENTS OF AN ARTIFICIAL NEURON 

This section describes the seven major components which make up an artificial neuron. These 

components are valid whether the neuron is used for input, output, or is in one of the hidden layers. 

Component 1. (Weighting Factors): A neuron usually receives many simultaneous inputs. Each input 

has its own relative weight which gives the input the impact that it needs on the processing element's summation 

function. These weights perform the same type of function as do the varying synaptic strengths of biological 

neurons.  

Component 2. (Summation Function): The first step in a processing element's operation is to 

compute the weighted sum of all of the inputs. Mathematically, the inputs and the corresponding weights are 

vectors which can be represented as (X11, X12 . . . X1n) and (W21, W22 . . . W2n). The total input signal is the 

dot, or inner, product of these two vectors. This simplistic summation function is found by multiplying each 

component of the i vector by the corresponding component of the w vector and then adding up all the products.   

Component 3. (Scaling and Limiting): After the processing element's transfer function, the result can 

pass through additional processes which scale and limit. This scaling simply multiplies a scale factor times the 

transfer value, and then adds an offset. Limiting is the mechanism which insures that the scaled result does not 

exceed an upper or lower bound.  

Component 4. (Output Function (Competition)): Each processing element is allowed one output 

signal which it may output to hundreds of other neurons. This is just like the biological neuron, where there are 

many inputs and only one output action. Normally, the output is directly equivalent to the transfer function's 

result. 

Component 5. (Error Function and Back-Propagated Value): In most learning networks the 

difference between the current output and the desired output is calculated. This raw error is then transformed by 

the error function to match particular network architecture. The most basic architectures use this error directly, 

but some square the error while retaining its sign, some cube the error, and other paradigms modify the raw 

error to fit their specific purposes. The artificial neuron's error is then typically propagated into the learning 

function of another processing element. This error term is sometimes called the current error (Binitha & Sathya, 

2012).   
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Component 7. (Transfer Function): The result of the summation function, almost always the 

weighted sum, is transformed to a working output through an algorithmic process known as the transfer 

function. In the transfer function shown in Fig. 6, the summation total can be compared with some threshold to 

determine the neural output.  

 
Fig. 6: Sample Transfer Functions (Andrew Whinston, 1996) 

  

Component 7.  

Learning Function: The purpose of the learning function is to modify the variable connection weights on the 

inputs of each processing element according to some neural based algorithm. This process of changing the 

weights of the input connections to achieve some desired result can also be called the adaption function, as well 

as the learning mode.  

 

V TRAINING AN ARTIFICIAL NEURAL NETWORK 

Once a network has been structured for a particular application, that network is ready to be trained. To 

start this process the initial weights are chosen randomly. Then, the training, or learning, begins. 

There are two approaches to training - supervised and unsupervised. Supervised training involves a 

mechanism of providing the network with the desired output either by manually "grading" the network's 

performance or by providing the desired outputs with the inputs. Unsupervised training is where the network has 

to make sense of the inputs without outside help. The vast bulk of networks utilize supervised training. 

Unsupervised training is used to perform some initial characterization on inputs (Boufardea & Garofalakis, 

2012). However, in the full blown sense of being truly self learning, it is still just a shining promise that is not 

fully understood, does not completely work, and thus is relegated to the laboratory. 

 

VI NEURO FUZZY SYSTEMS 

The neuro-fuzzy term was born by the fusing of these two techniques. As researcher combine these two 

tools in different way, then, some confusion was created on the exact meaning of this term. Still there is no 

absolute consensus but in general, the neuro-fuzzy term means a type of system characterized for a similar 

structure of a fuzzy controller where the fuzzy sets and rules are adjusted using neural networks tuning 

techniques in an iterative way with data vectors (input and output system data) , (Lin, C.T. & Lee, C.S.,(1991)) 

as shown in Fig. 7.  Such systems show two distinct ways of behavior. 
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Fig. 7: The Structure of a Neuro-Fuzzy System (Lin & Lee, 1991) 

 

In a first phase, called learning phase, it behaves like neural networks that learns its internal parameters 

off-line. Later, in the execution phase, it behaves like a fuzzy logic system. 

Separately, each one of these techniques possess advantages and disadvantages that, when mixed 

together provides better results than the ones achieved with the use of each isolated technique. 

Since the moment that fuzzy systems become popular in industrial application, the community 

perceived that the development of a fuzzy system with good performance is not an easy task. The problem of 

finding membership functions and appropriate rules is frequently a tiring process of attempt and error. This 

leads to the idea of applying learning algorithms to the fuzzy systems. The neural networks, that have efficient 

learning algorithms, had been presented as an alternative to automate or to support the development of tuning 

fuzzy systems. The first studies of the neuro-fuzzy systems started in early 90’, (Jang,1991), (Berenji, 1992) and 

(Nauck, 1993). The majority of the first applications were in process control. Gradually, its application spread 

for all the areas of the knowledge like, data analysis, data classification, imperfections detection and support to 

decision-making, etc. Neural networks and fuzzy systems can be combined to join its advantages and to cure its 

individual illness. Neural networks introduce its computational characteristics of learning in the fuzzy systems 

and receive from them the interpretation and clarity of systems representation. Thus, the disadvantages of the 

fuzzy systems are compensated by the capacities of the neural networks. These techniques are complementary, 

which justifies its use together. 

 

6.1 Types of Neuro-Fuzzy Systems 

In general, all the combinations of techniques based on neural networks and fuzzy logic can be called 

neuro-fuzzy systems. The different combinations of these techniques can be divided, in accordance with Jang 

(1992), in the following classes: 

Cooperative Neuro-Fuzzy System: In the cooperative systems there is a pre-processing phase where 

the neural networks mechanisms of learning determine some sub-blocks of the fuzzy system. For instance, the 

fuzzy sets and/or fuzzy rules (fuzzy associative memories or the use of clustering algorithms) to determine the 

rules and fuzzy sets position. After the fuzzy sub-blocks are calculated the neural network learning methods are 

taken away, executing only the fuzzy system. 

Concurrent Neuro-Fuzzy System: In the concurrent systems the neural network and the fuzzy system 

work continuously together. In general, the neural networks pre-processes the inputs (or pos-processes the 

outputs) of the fuzzy system. 

Hybrid Neuro-Fuzzy Systems: In this category, a neural network is used to learn some parameters of 

the fuzzy system (parameters of the fuzzy sets, fuzzy rules and weights of the rules) in an iterative way. The 

majority of the researchers use the neuro-fuzzy term to refer only hybrid neuro-fuzzy system. Nauck (1995) 

definition: “A hybrid neuro-fuzzy system is a fuzzy system that uses a learning algorithm based on gradients or 

inspired by the neural networks theory (heuristical learning strategies) to determine its parameters (fuzzy sets 

and fuzzy rules) through the patterns processing(input and output)”. 

A neuro-fuzzy system can be interpreted as a set of fuzzy rules. This system can be created from input/ 

output data or initialised with a prior knowledge in the same way of fuzzy rules. The resultant system by fusing 

fuzzy systems and neural networks has as advantages of learning through patterns and the easy interpretation of 

its functionality. There are several different ways to develop hybrid neuro-fuzzy systems, therefore, being a 
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recent research subject, each researcher has defined its own particular models. These models are similar in its 

essence, but they present basic differences. Many types of neuro-fuzzy systems are represented by neural 

networks that implement logical functions. This is not necessary for the application of a learning algorithm into 

a fuzzy system, however, the representation trough a neural networks is more convenient because it allows to 

visualize the flow of data through the system and the error signals that are used to update its parameters. The 

additional benefit is to allow the comparison of the different models and visualize its structural differences. 

 

6.2   Architectures of Neuro-Fuzzy Network System 

The techniques of artificial intelligence based in fuzzy logic and neural networks are frequently applied 

together. The reasons to combine these two paradigms come out of the difficulties and inherent limitations of 

each isolated paradigm. Generically, when they are used in a combined way, they are called Neuro-Fuzzy 

Systems (Viharos1 & Kis1, 2014). This term, however, is often used to assign a specific type of system that 

integrates both techniques. This type of system is characterized by a fuzzy system where fuzzy sets and fuzzy 

rules are adjusted using input output patterns. There are several different implementations of neuro-fuzzy 

systems, where each author defined its own model.   

 

The Fuzzy Adaptive Learning Control Network Architecture  (FALCON) 

FALCON is an architecture of five layers as it is shown in Fig. 8. There are two linguistics nodes for 

each output. One is for the patterns and the other is for the real output of the FALCON. The first hidden layer is 

responsible for the mapping of the input variables relatively to each membership functions. The second hidden 

layer defines the antecedents of the rules followed by the consequents in the third hidden layer. According to 

Kosko (1992), FALCON uses a hybrid learning algorithm composed by a unsupervised learning to define the 

initial membership functions and initial rule base and it uses a learning algorithm based on the gradient descent 

to optimize/adjust the final parameters of the membership functions to produce the desired output. 

 
Fig. 8: FALCON architecture. 

 

The Adaptive Network based Fuzzy Inference System Architecture (ANFIS) 

(Jang,1993) proposed architecture and learning algorithms which is combination of fuzzy logic with 

neural networks for drawing inference . It is a model that is proficient in constructing input-output mapping 

accurately based on both human knowledge using data in the form of fuzzy if-then rules and predetermined 

input output data pairs. ANFIS implements a Takagi Sugeno fuzzy inference system and it has five layers as 

shown in Fig. 9. The first hidden layer is responsible for the mapping of the input variable relatively to each 

membership functions. The operator T-norm is applied in the second hidden layer to calculate the antecedents of 

the rules. The third hidden layer normalizes the rules strengths followed by the fourth hidden layer where the 

consequents of the rules are determined. The output layer calculates the global output as the summation of all 

the signals that arrive to this layer. ANFIS uses back propagation learning to determine the input membership 

functions parameters and the least mean square method to determine the consequents parameters. Each step of 

the iterative learning algorithm has two parts. In the first part, the input patterns are propagated and the 

parameters of the consequents are calculated using the iterative minimum squared method algorithm, while the 

parameters of the premises are considered fixed. In the second part, the input patterns are propagated again and 
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in each iteration the learning algorithm back propagation is used to modify the parameters of the premises, while 

the consequents remain fixed. 

 
Fig. 9:   ANFIS architecture (Lei Y., He Z., Zi Y. & Hu Q., 2007). 

 

The Generalized Approximate Reasoning based Intelligence Control Architecture (GARIC) 

GARIC implements a neuro-fuzzy system using two neural network modules, ASN (Action Selection 

Network) and AEN (Action State Evaluation Network). The AEN is an adaptative evaluator of ASN actions. 

The ASN of the GARIC is an advanced network of five layers.  

Fig. 10 illustrates GARIC-ASN structure. The connections between the layers are not weighted. 

The first hidden layer stores the linguistics values of all input variables. Each input can only connect to 

the first layer, which represents its associated linguistics values. The second hidden layer represents the fuzzy 

rule nodes that determine the compatibility degree of each rule using a softmin operator. The third hidden layer 

represents the linguistics values of the output variables. The conclusions of each rule are calculated depending 

on the strength of the rules antecedents calculated in the rule nodes. GARIC uses the mean of local mean of 

maximum method to calculate the output of the rules. This method needs for a numerical value in the exit of 

each rule. Thus, the conclusions should be transformed from fuzzy values for numerical values before being 

accumulated in the final output value of the system. GARIC uses a mixture of gradient descending and 

reinforcement learning for a fine adjustment of its internal parameters. 

 

 
Fig. 10:   GARIC Architecture. (Takagi & Hayashi, 1991) 

 

The Neural Fuzzy Controller Architecture (NEFCON) 

NEFCON was drawn to implement a Mamdani type inference fuzzy system as illustrated in Fig. 11. 

The connections in this architecture are weighted with fuzzy sets and rules using the same antecedents (called 

shared weights), which are represented by the drawn ellipses. They assure the integrity of the base of rules. The 

input units assume the function of fuzzyfication interface, the logical interface is represented by the propagation 

function and the output unit is responsible for the defuzzyfication interface. The process of learning in 
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architecture NEFCON is based in a mixture of reinforcement learning with back propagation algorithm. This 

architecture can be used to learn the rule base from the beginning, if there is no prior knowledge of the system, 

or to optimise an initial manually defined rule base. NEFCON has two variants NEFPROX (for function 

approximation) and NEFCLASS (for classification tasks). 

 
Fig. 11: NEFCON Architecture (Nauck & Kruse,1994). 

 

Evolving Neural Fuzzy Network Architecture (EFuNN) 

In EFuNN all nodes are created during the learning phase. The first layer passes data to the second 

layer that calculates the degrees of compatibility in relation to the predefined membership functions. The third 

layer contains fuzzy rule nodes representing prototypes of input- output data as an association of hyper-spheres 

from the fuzzy input and fuzzy output spaces. Each rule node is defined by two vectors of connection weights, 

which are adjusted through a hybrid learning technique. The fourth layer calculates the degree to which output 

membership functions are matched the input data and the fifth layer carries out the defuzzyfication and 

calculates the numerical value for the output variable.  

 

Dynamic Evolving Neural Fuzzy Network (DMEFUNN).  

This is a modified version of the EFuNN with the idea of not only the winning rule node’s activation is 

propagated but a group of rule nodes that is dynamic selected for every new input vector and their activation 

values are used to calculate the dynamical parameters of the output function as shown in Fig. 12. While EFuNN 

implements Mamdani type fuzzy rules, dmEFuNN implements Takagi Sugeno fuzzy rules. 

 

 
 

Fig. 12: EfuNN Architecture (Neha Kashyap & Nidhi Agarwal, 2014). 

 

To get a more detail description of this architecture, beyond the specific pointed references made, a 

detailed survey was made by Abraham in 2000 where it can be found a detailed description of several well 

known neuro-fuzzy architectures and their respective learning algorithms. 
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7.0    Conclusion:   

Artificial neural networks are computers whose architecture is modeled after the brain. They typically consist of 

many hundreds of simple processing units which are wired together in a complex communication network. Each 

unit or node is a simplified mode l of a real neuron which sends off a new signal if it receives a sufficiently 

strong input signal from the other nodes to which it is connected. The key element of this paradigm is the novel 

structure of the information processing system. It is composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. Prediction for the future rests on 

some sort of evidence or established trend which, with extrapolation, clearly takes us into a new realm. Neural 

Networks will fascinate user-specific systems for education, information processing, entertainment, genetic 

engineering, neurology and psychology. ANNs, like people, learn by example. NN’s ability to learn by example 

makes them very flexible and powerful. Perhaps the most exciting aspect of neural networks is the possibility 

that some day 'conscious' networks might be produced 
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