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ABSTRACT: The Controller Area Network (CAN) protocol is inherently used in distributed real-time, resource-

constrained embedded systems due to its deep roots in automotive as well as other industries. In CAN, bit-stuffing 

is employed in the physical hardware layer to synchronize the clocks of sending and receiving microcontroller 

nodes. Such a mechanism causes the frame length to vary depending on the sequence of data transmitted in the 

network and hence introduces timing jitter. To address this problem, a wide-range of software techniques have 

been proposed and found useful in practical embedded system applications. In this paper, we seek to verify the 

effectiveness of the software bit stuffing technique in dealing with transmission jitter and show how such an 

improvement in jitter behavior can help to improve the performance of a distributed CAN-based adaptive cruise 

control system used in modern passenger cars. 
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I. INTRODUCTION 
The Controller Area Network (CAN) protocol is widely used in distributed embedded control systems 

[1], [2]. CAN uses “Non Return to Zero” (NRZ) coding for bit representation. Therefore, when a long sequence 

of identical bits has been transmitted, a drift in the receiver’s clock may occur which might in turn cause a 

corruption in the received message. To avoid this scenario, the CAN communication protocol (in its hardware 

layer) employs a bit-stuffing mechanism. In bit-stuffing, whenever a sequence of five consecutive identical bits 

are found in a given frame, the sending node adds an additional bit of the opposite polarity to force a transition in 

the voltage level and hence avoid clock drift. At the receiver, such stuffed bits are removed to recover the original 

data [3], [4]. Despite the usefulness of bit-stuffing mechanism in CAN, it results in a variation of the frame length 

that becomes (in part) a function of the data contents. Such variation results in introducing a jitter in the timing of 

tasks which are due to execute simultaneously on different nodes in a CAN-based network. The presence of jitter 

may have a negative impact on the performance of many distributed embedded systems including control 

applications [5]–[13].  

There has been a great deal of interest in addressing the jitter problem caused by bit-stuffing, and a wide 

range of jitter-reduction techniques were hence proposed. For example, Nolte and his colleagues [14], [15] 

proposed a technique in which the data section of each CAN frame is XOR-ed with the alternating bit-pattern 

101010… etc. This technique was found useful for particular industrial-based data in which the probability of 

having bit value of “1” (or “0”) was not 50%. A modification to this approach was carried out in [16], [17], where 

each byte is checked individually and will only be masked (i.e. XOR-ed with 10101010) if it is subject to CAN 

bit-stuffing. This technique was described as “selective byte-based XOR masking” and referred to as “Nolte C”. 

Please note that Nolte A refers to the direct application of Nolte’s method, and Nolte B refers to a “frame-based 

XOR masking” which was also found ineffective with pseudorandom data [16]. The implementation of Nolte C 

in practical systems demonstrated a jitter reduction of 20%. Further reduction in jitter was achieved by “software 

bit stuffing” (SBS) [16] and “eight-to-eleven modulation” (EEM) [18], where the complete data section is masked 

to avoid the possibility of CAN hardware bit-stuffing. Alternative techniques for dealing with jitter problem in 

CAN system are detailed in [19]–[25]. 

http://www.ajer.org/
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The impact of SBS on the performance of a distributed CAN-based “adaptive cruise control” (ACC) 

system was carried out in [10]. The system was built using “hardware-in-the-loop” (HIL) testing method [26], 

[27]. The ACC system considered had 10 nodes (one Master and nine Slaves). Each Slave node was responsible 

of controlling a different part of the vehicle as follows: front left wheel, front right wheel, rear left wheel, rear 

right wheel, radar interface, pedal interface, driver interface, throttle control and backup Master. The results show 

that, when employing the SBS technique, the control performance (measured by the integral of absolute error in 

velocity and in distance as well as the maximum jerk) was generally improved, except in the case of positive jerk. 

Such results were found promising for the system type considered in that study. In [28], the impact of SBS on the 

control behavior of a distributed CAN-based CarboNitriding heat treatment furnace system was investigated. The 

study revealed that a significant improvement in the control performance of the furnace (measured mainly by the 

integral of absolute error and integral of time-weighted absolute error) was achieved, particularly when a 

temperature disturbance was introduced. 

This paper verifies the effectiveness of SBS by applying it to a more recent version of the ACC system 

that is compacted to 6 nodes (instead of 10). Reducing the network size in the design of a passenger vehicle may 

be required in some circumstances. Such a modification in the system architecture is expected to have an impact 

on the transmission jitter and jitter reduction levels resulting from bit stuffing (due to significant alteration in the 

task list run by each node as well as the contents of data exchanged in the network).  

The paper is organized as follows: Section II provides an overview of the ACC system. Section III 

outlines the experimental methodology used in this study. The experimental results obtained are detailed in 

Section IV, and finally the paper conclusions are drawn in Section V. 

II. ADAPTIVE CRUISE CONTROL (ACC) SYSTEM 
In this section, we provide a brief description of the adaptive cruise control system and how it can be 

built on an HIL testbed facility. 

2.1. Overview 

The ACC is a relatively new technological development in the automotive field, and is said to reduce 

driver fatigue and the rate of auto accidents whilst increasing fuel efficiency [29]. The main function of the ACC 

is to control the speed of the host vehicle using information about the distance between the subject vehicle and 

any front vehicles (using Doppler radar), the motion of the subject vehicle itself and commands from the driver. 

Based on this information, the controller sends commands to the vehicle throttle and brakes to either regulate the 

vehicle speed to a given set value or maintain a safe distance to any leading vehicles (respectively). It also sends 

status information to the driver. The ACC concept is summarized in Fig. 1. 

 
Fig. 1: An overview of the ACC system operation [10] 

2.2. Testbed 

The HIL testbed employed in this study has been previously described in detail [30]. Briefly, the 

simulation consists of a real-time representation of a motor vehicle travelling down a three-lane motorway, under 

realistic traffic conditions. It enables different embedded control system architectures to be assessed and 

quantitatively compared in a variety of realistic and repeatable scenarios. In this section, the hardware under test 

represents an ACC system. 

In the present study, we create the software required to implement the control system as a series of 

communicating tasks, which are distributed across the multiprocessor architecture (6-node implementation). A 

schematic of the overall system, with the various inputs and outputs of each node, is shown in Fig. 2. Note that, 

as compared to 10-node system, we have only one node to control the front wheels and one node to control the 

rear wheels. Moreover, the driver interface and pedal interface nodes are combined into a single node, and no 

backup Master node is used in the system. 
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Fig. 2: The 6-node ACC implementation [31] 

 

Each node used here is based on Infineon C167 microcontroller operating at a 20 MHz oscillator 

frequency. The nodes are connected via a CAN bus running at 500 kbit/sec baudrate, with the TTC-SCC protocol 

used to synchronize the schedulers on the communicating nodes [32], [33]. Each node executes its tasks using a 

TTC scheduler [34] and the scheduler code is written in C language [35]. The Keil C166/167 tool chain is used to 

develop and de-bug the software. The system uses a Tick interval of 5 ms and the main ACC control loop is 

iterated every 100 ms. The controller itself consists of an outer distance and velocity control loop, acting on the 

driver setpoints and radar information, which provides an inner control loop with an instantaneous reference 

velocity signal to track. A dual-output PID controller then actuates the throttle and brakes to equalize the actual 

vehicle velocity to this reference velocity. 

III. EXPERIMENTAL METHODOLOGY  
Three different data frames were considered:  

 Original (with 5 bytes for real data in ‘Tick’ messages and 1 byte for Slave ID). 

 Nolte C (with 5 bytes for real data in ‘Tick’ messages, 1 byte for Slave ID and 1 byte for coding 

information). 

 Software bit stuffing (with 5 bytes for real data in ‘Tick’ messages, 1 byte for Slave ID and 2 bytes for 

stuff bits). 

  In each case, to compare the jitter, measurements were made from the Master and Slave ISR functions, 

using the following methodology. A pin on the Master node was set high (for a short period) at the start of the 

Master ISR function. Another pin on the Slave (initially high) was set low at the start of Slave’s Interrupt Service 

Routine (ISR) function. The signals from these two pins were then AND-ed (using a 74LS08N chip) to give a set 

of pulses whose widths represent the transmission delays. These widths were measured using the National 

Instruments data acquisition card ‘NI PCI-6035E’ used in conjunction with LabVIEW 7 software. 

To assess the impact of the different data coding methods on system performance, the Integral of 

Absolute Error (IAE) was measured. The IAE represents the error between the measured speed (or time-gap) and 

the reference, with the test duration T of 300 seconds. The IAE is defined in (1). 

dtteIAE

T


0

)(                                                                         (1) 

 

The speed setpoint used for each velocity test was 70 MPH and each distance test was performed whilst 

following a lead vehicle at 50 MPH (distance setpoint of 33.53 m for a 1.5 s headway).  

In addition to the velocity (and distance) error measurement, the rate of change of acceleration (defined 

as “jerk”) was recorded to provide an indication of the control performance. Both positive and negative jerk were 

recorded over a 300 second test period in which the ACC system was put through a series of typical maneuvers. 

Note that the jerk levels form a significant factor in this system, and provide a sensitive measure of the system 

performance. Increased jerk levels, caused by large or uneven changes in the accelerator or brake pedal inputs, 

may lead to increased passenger discomfort, as well as increased wear in the powertrain components [36]. 
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IV. RESULTS 
This section presents the results of this study which include jitter and performance measurements. The 

performance measurements consists of IAE velocity, IAE distance, and the maximum positive and negative jerk. 

4.1. Jitter measurements 

Table 1 shows the basic timing measurements for the ACC system including the jitter values. The 

difference jitter is taken as the difference between the worst-case and the best-case latency values of the entire 

sample range. On the other hand, the average jitter is taken as the standard deviation of the total latency of the 

entire sample range. 

Table 1. Basic timing results from the ACC study. 

Test Original Nolte C SBS 

Min transmission (s) 292.2 297.2 319.6 

Max transmission (s) 308.1 311.3 329.8 

Average transmission (s) 299.8 301.8 323.9 

Difference Jitter (s) 15.9 14.1 10.2 

Average Jitter (s) 3.9 2.3 2.0 

 

Results in the table show that the levels of transmission jitter have decreased by approximately 11% and 

36% as an effect of applying the Nolte C and SBS techniques (respectively) on the considered hardware platform. 

Such reduction in jitter is seen significant in practice. Remember that, here, all protocols use 6 bytes for data 

(including the Slave ID). 

4.2. Impact on performance 

Table 2 below shows the control performance measures of the ACC system when using the different data 

coding methods. 

Table 2: Impact of Nolte C and SBS on the control performance of the ACC study. 

Test Original Nolte C SBS 

IAE Velocity 43.54 43.28 41.88 

IAE Distance 127.96 126.49 124.45 

Max Pos Jerk (m/s3) 2.04 2.03 1.84 

Max Neg Jerk (m/s3) 2.34 2.36 2.26 

 

From the results shown in the table, we note that Nolte C had no real measurable impact on the control 

performance of the ACC testbed. In contrast, the SBS technique helped to improve the overall system 

performance. Moreover, we can clearly see that the levels of positive and negative jerk have been reduced by 

approximately 10% and 3.4% (respectively) when applying SBS.  

4.3. Comparison with 10-node ACC system 

When comparing the results obtained here with those of the 10-node ACC system [10], it is clear that a 

significant improvement in the average jitter and maximum positive jerk has been achieved. The improvement in 

IAE velocity and IAE distance are comparable. It is worth noting that the results presented for 10-node system 

were based on that the original frame sends 8-bytes real data. In contrary, the results presented here considers that 

the original frame uses only 6-bytes and the remaining two bytes were left empty (for a fair comparison with SBS 

technique that can only be applied to 6-bytes actual data). This may interpret the discrepancy in our results, where 

we would expect to see a better improvement in the other performance measures if the same number of real data 

bytes were transmitted in both cases. 

V. CONCLUSIONS 
This paper aimed to investigate the impact of a jitter-reduction technique, known as “software bit 

stuffing” (SBS), on the control performance of a distributed “adaptive cruise control” (ACC) system used in 

modern passenger vehicles. The results clearly demonstrated that the jitter reduction of 36% in the message 

transmission time had a significant impact on the ACC system performance by reducing the maximum positive 

and negative jerk. 

The paper also compared the results obtained here with those obtained from a previously developed ACC 

system with different network architecture (i.e. 6-node versus 10-node). It was found that the modification of 

network architecture and hence the data patterns exchanged in the network also had an impact on the overall 

system performance. This was manifested by the improvement in average jitter and maximum positive jerk. 
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Note that it would be expected to achieve the same level of performance improvement as a result of 

employing EEM technique in the ACC system considered in this study. Further work suggests to compare the 

results from SBS and EEM with alternative data coding techniques meant to deal with jitter and clock 

synchronization problems in CAN-based distributed embedded systems (e.g. the studies referred to in the literature 

review). 
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