
American Journal of Engineering Research (AJER) 2025

 American Journal of Engineering Research (AJER)

e-ISSN: 2320-0847 p-ISSN : 2320-0936

 Volume-14, Issue-1, pp-99-106

 www.ajer.org
Research Paper Open Access

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 99

Mobile SEO Application Development: Leveraging

SwiftUI and Alamofire for Domain Insights

Ekaterine Papava
1AOI, Tbilisi, Georgia

Georgian Technical University, Faculty of Informatics and Control Systems, PhD Student,

Progrem: Informatics

ABSTRACT: In the modern digital landscape, tools that facilitate quick and effective SEO analysis are

invaluable for businesses aiming to enhance their online presence. This research article details the development

of a Domain Checker App using SwiftUI and Alamofire, designed to fetch and display SEO-related metrics such

as Organic Keywords Count, Internal Link Quality, and Headings from a given domain. The application

emphasizes user-friendly design, robust error handling, and efficient data fetching, showcasing its relevance for

both developers and end-users. This paper explores the architecture, code implementation, and practical use

cases, providing a blueprint for similar applications..

KEYWORDS: SwiftUI, Alamofire, Swift Programming, JSON Parsing, API Integration, SEO Analysis, Mobile

App Development, Language-Specific SEO Solutions, Natural Language Processing, Data Visualization

--- ----------

Date of Submission: 13-01-2025 Date of acceptance: 27-01-2025

--- ----------

I. INTRODUCTION

Search engine optimization (SEO) tools play a pivotal role in improving website visibility and driving

organic traffic, which is essential for businesses operating in an increasingly competitive online ecosystem. The

rapid evolution of mobile technologies demands SEO applications that are not only functional but also user-

centric and adaptive to varying user needs. This study introduces a Domain Checker App built with SwiftUI and

Alamofire, offering an intuitive platform to fetch, parse, and display critical SEO metrics for any given domain.

The app’s standout features include dynamic data parsing, real-time API integration, and robust error-

handling mechanisms, which ensure reliability and usability for end-users. By leveraging Alamofire’s RESTful

API capabilities and SwiftUI’s declarative UI design, the application achieves seamless performance while

providing actionable insights for SEO professionals. Additionally, this research explores the potential of

integrating Natural Language Processing (NLP) to address challenges in language-specific SEO, particularly for

languages with complex grammatical structures, such as Georgian. This novel approach extends the app’s utility

to a wider audience and opens avenues for future advancements in SEO-focused app development.

The following sections outline the architecture, core functionalities, and practical applications of the

Domain Checker App. Furthermore, the study highlights opportunities for enhancing the tool’s capabilities,

including the integration of advanced analytics, NLP-based optimizations, and support for diverse user

demographics, ensuring the app’s relevance in an ever-changing digital landscape.

II. CHALLENGES OF SEO AND NLP SUPPORT FOR THE GEORGIAN LANGUAGE

Challenges of SEO and the Role of NLP in Emerging Languages:

While SEO tools are widely available for global languages like English and Spanish, challenges persist for less-

supported languages, such as Georgian. The Georgian language, with its unique Mkhedruli alphabet and

grammatical complexity, presents significant hurdles for indexing, keyword analysis, and content optimization.

These limitations stem from inadequate support in widely-used SEO platforms, which struggle with non-Latin

scripts and fail to account for Georgian linguistic structures.

http://www.ajer.org/

American Journal of Engineering Research (AJER) 2025

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 100

Addressing these gaps involves integrating Natural Language Processing (NLP) techniques tailored to

Georgian's unique features. By enhancing tokenization, stemming, and keyword extraction processes, businesses

can improve SEO strategies and ensure content resonates with local audiences. Future developments in this area

aim to create localized datasets, improve API encoding for Georgian script, and foster collaboration with global

SEO platforms. These efforts will support the broader goal of developing accessible tools for emerging

languages, ensuring inclusivity in the digital landscape.

III. OBJECTIVES

The primary objectives of this research include:

 Developing a user-friendly interface for domain input and data display.

 Implementing a reliable API integration using Alamofire.

 Handling errors gracefully to improve user experience.

 Showcasing the potential of SwiftUI in building responsive and interactive applications.

 Highlighting the potential application of NLP in handling complex linguistic structures, such as

Georgian, as a future research direction.

IV. METHODOLOGY

Overview of the Application

The Domain Checker App consists of two main components:

 ContentView: The entry point for user interaction, where domains are entered, and data fetching is

initiated.

 DashboardView: Displays fetched data, including Organic Keywords Count, Internal Links, and

Headings, in an organized layout.

V. KEY FEATURES

This app demonstrates core functionalities vital for modern application development:

Fetching Data from an API:

 API integration is a critical component in modern apps that rely on external data. The Domain Checker

App uses Alamofire to send a POST request to an SEO data API. Alamofire simplifies network

requests by providing a concise syntax and built-in functionalities like parameter encoding and header

management.

 The app sends a domain as input and expects JSON data in response, which is then parsed into a usable

format.

Dynamic Parsing and Display:

 Parsing the JSON response is a multi-step process, where data is decoded into Swift structures using

Codable. The app processes metrics such as Organic Keywords Count, Internal Links, and Headings

dynamically. The parsed data is displayed in the user interface in real time, ensuring users receive

actionable insights quickly.

 By leveraging SwiftUI’s declarative syntax, the app dynamically updates the interface based on the

received data.

Error and Loading State Handling:

 User experience is enhanced by managing potential errors and providing feedback during loading. The

app ensures that users are informed when data fetching fails or input is invalid.

 During data fetching, a ProgressView is displayed, giving users a clear visual indicator of the ongoing

process. If an error occurs (e.g., invalid domain, API failure), a descriptive error message is displayed.

VI. DETAILED BREAKDOWN OF KEY FEATURES

User Input

TextField for Domain Input:

 The app includes a TextField component that allows users to enter the domain they wish to analyze.

This field is styled for clarity and usability, featuring rounded borders and appropriate padding.

 Input validation is implemented to ensure that the domain field is not empty before the fetch operation

can proceed. This reduces the likelihood of unnecessary API requests.

American Journal of Engineering Research (AJER) 2025

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 101

Fig.1 TextField for Domain Input on the Mobile App

Fetch Button:

 A button is provided to trigger the data-fetching operation. The button dynamically updates its state

based on the validity of the user input and loading status. For example, the button is disabled if the

domain field is empty or if data is being fetched.

Fig.2 Data-fetching operation

Data Fetching

API Integration with Alamofire:

The core functionality of the app lies in its ability to fetch data from an API. Alamofire simplifies this process,

providing a high-level abstraction for making HTTP requests. The fetchData function is responsible for sending

a POST request to the SEO data API with the user-entered domain. Key aspects include:

1. Parameter Passing:

 The function sends the domain as a parameter within the request body. This ensures that the API can

correctly identify and process the input domain.

American Journal of Engineering Research (AJER) 2025

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 102

Example parameter structure:

Fig.3 Function sending the domain as a parameter within the request body

2. Header Management:

 Secure communication is ensured by including necessary headers such as authorization tokens and

content type.

Example header structure:

Fig.4 Alamofire’s AF.request for Headers

3. POST Request:

 Alamofire’s AF.request method is used to send the request. The method takes the API endpoint, HTTP

method, parameters, and headers as arguments.

Example:

Fig.5 Alamofire’s AF.request

4. Error Handling

Handling potential errors is critical for providing a smooth user experience. The app anticipates various failure

scenarios, such as:

1. Invalid Domain Input:

 If the user enters an empty or incorrectly formatted domain, the app prevents the request from being

sent and displays an appropriate error message.

2. Network Errors:

 Failures such as timeouts or lack of internet connectivity are captured and communicated to the user

via descriptive error messages.

3. API Errors:

 Errors returned by the API (e.g., invalid domain or server-side issues) are parsed and displayed to the

user.

 Example error message display:

 errorMessage = error.localizedDescription

5. JSON Parsing

The JSON response from the API is decoded into a predefined Swift structure using the Codable protocol. This

ensures seamless parsing and usage of the response data within the app. For example:

American Journal of Engineering Research (AJER) 2025

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 103

Fig.6 JSON Parsing

6. Response Structure:

Decoding Process:

Fig.7 Decoding Process

7. Loading State Management

During data fetching, a ProgressView is displayed to indicate that the app is working on the request. This visual

cue improves user experience by providing immediate feedback.

8. Data Display

DashboardView: Displaying SEO Data

The DashboardView serves as the visual representation of the fetched SEO metrics. It organizes data into

structured sections, ensuring clarity and accessibility for the user. The key features and design elements include:

1. List Display:

 Data is displayed in a list format, making it easy for users to navigate through different metrics such as:

 Organic Keywords Count.

 Internal Links.

 Headings grouped by their levels (e.g., H1, H2, H3).

2. Dynamic Sections:

 The list is broken into distinct sections, with each section dynamically populated based on the fetched

data.

3. Internal Links:

 Internal links are displayed with truncation to manage long URLs, ensuring a clean and organized

presentation.

 For example:

American Journal of Engineering Research (AJER) 2025

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 104

 Text(link).lineLimit(1).truncationMode(.tail)

This approach ensures that even extensive link lists remain visually tidy without sacrificing usability.

Fig.8 Real time data display

9. Headings Display:

 Headings are categorized by their levels (e.g., H1, H2, H3) and displayed with accompanying text for

better context.

Fig.9 Heading Tags

4. Presentation:

 SwiftUI’s declarative syntax ensures smooth animations and transitions between different states,

providing an enhanced user experience.

American Journal of Engineering Research (AJER) 2025

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 105

5. Error States in Display:

 If no data is available for any section (e.g., no internal links found), the app displays a friendly

placeholder message like "No internal links detected for this domain."

6. Styling and Accessibility:

 The DashboardView incorporates accessible design principles by ensuring legible font sizes, clear

contrast, and VoiceOver support.

Visual and Functional Enhancements

 Custom Icons: Icons are added alongside metrics to visually distinguish between sections.

 Expandable Views: Sections can be collapsible to allow users to focus on specific metrics without

overwhelming the interface.

 Search or Filter: Additional functionality could be added to allow users to search or filter internal

links or headings based on keywords.

VII. ONGOING RESEARCH AND API DEPLOYMENT FOR NLP IN GEORGIAN

Developing robust NLP tools for languages with unique characteristics, like Georgian, remains an area of

interest for exploration on the next phase. Although this project primarily addresses SEO analysis, expanding its

scope to include NLP capabilities can unlock broader functionalities. For example, tools enabling automatic

keyword extraction, semantic parsing, or sentiment analysis for Georgian text could significantly improve the

application’s utility.

Fig.10 Getting Data in Georgian Language

Future research topics include:

1. Morpho-Syntactic Analysis: Handling Georgian’s complex grammar, such as verb conjugations and

compound structures, to improve linguistic insights.

2. Dataset Creation: Building datasets to include regional dialects, formal writing, and domain-specific

vocabularies for tasks like keyword generation.

3. NLP Model Integration: Deploying Georgian-specific NLP models for semantic parsing or content

classification within the app.

4. Collaborative Platforms: looking for the solutions of integration these developments into global

frameworks, aiming compatibility and broader accessibility.

This research trajectory ensures that the app can evolve beyond its initial scope—not only as a mobile

application providing essential SEO analysis tools but also as an innovative platform available on smartphones.

This advancement could drive groundbreaking solutions for Georgian-language SEO and NLP challenges.

American Journal of Engineering Research (AJER) 2025

w w w . a j e r . o r g

w w w . a j e r . o r g

Page 106

VIII. CONCLUSION

The Domain Checker App effectively demonstrates the integration of SwiftUI and Alamofire to build a

responsive, user-friendly mobile application. Key functionalities, such as dynamic data parsing, error handling,

and real-time UI updates, ensure a robust user experience, making it a practical tool for SEO professionals on

the go.

Future iterations could expand the app’s capabilities by integrating additional SEO metrics, enhancing

data visualization, and exploring the inclusion of NLP features to support complex linguistic structures, further

increasing its versatility and global applicability. This app offers a solid foundation for mobile-first SEO

analysis, with the potential to evolve and meet the growing needs of users in an increasingly digital world.

REFERENCES
[1]. Build Mobile Apps with SwiftUI and Firebase: Learn SwiftUI and Firebase by Building Real-World Applications Communicating

with a Backend. 2023. doi: 10.1007/978-1-4842-9452-9.

[2]. Meurer, P., "The Morphosyntactic analysis of Georgian," 2023.

[3]. L. Liu, M. Bahrami, J. Park, and C. Wei-Peng, “Web API Search: Discover Web API and Its Endpoint with Natural Language
Queries,” Springer, Cham, 2020, pp. 96–113. doi: 10.1007/978-3-030-59618-7_7.

[4]. Solberg Söilen, K. (2024). The E-Commerce Website and Mobile App. In: Digital Marketing. Springer Texts in Business and

Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-69518-6_10
[5]. Kim, J., & Lee, J. (2002). Critical design factors for successful e-commerce systems. Behaviour & Information Technology, 21(3),

185–199. https://doi.org/10.1080/0144929021000009054

