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ABSTRACT: Since the outbreak of the Coronavirus disease (COVID-19) in 2020, various modalities have been 

implemented to help curb the disease as it is still endemic in different countries. Some of such modalities 

included non-pharmaceutical interventions such as social distancing, hand hygiene, mask wearing amongst 

others. In this work, we examined the effectiveness of those non-pharmaceutical interventions on the 

coronavirus disease using a deterministic 𝑆𝐸𝐼𝑅  model. This consists of investigating the disease-free and 

endemic equilibria, basic reproduction number and stability. The local stability of the disease-free equilibrium 

was determined by solving the Jacobian matrix of the system of the system of differential equations while the 

basic reproduction number was calculated using the next generation matrix method. Numerical simulations to 

determine the active factor(s) in the transmission, preventive and possible elimination of the disease were 

carried out using a computational software called Maple. It was revealed that when people comply with these 

non-pharmaceutical interventions the rate of recovery increases and the spread of the disease is reduced 

greatly. 

KEYWORDS: Coronavirus, Non-Pharmaceutical, Interventions, basic reproduction number, social distancing, 
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I. INTRODUCTION  

The Coronavirus, also known as COVID-19, which is caused by a novel virus called severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). It originated in Wuhan, China, with the first cases reported 

in December 2019 and later spreading to other countries. The World Health Organization (WHO, 2021) 

declared it a global health emergency in January 2020 and a pandemic in march 2020 (Cennimo, 2023). The 

virus is believed to have originated from a seafood and wet animal market where the first victims contracted the 

disease. 

COVID-19 primarily spreads between people in close contact, such as conversational distance, through 

small liquid particles released from an infected person’s mouth or nose when they cough, sneeze, speak, sing or 

breathe. It can also spread through long-range airborne transmission in poorly ventilated or crowded indoor 

settings (WHO, 2021). Additionally, people can become infected by touching surfaces or objects contaminated 

by the virus and then touching their eyes, nose, or mouth. The severity of COVID-19 symptoms varies, ranging 

from very mild to severe. Some individuals may experience no symptoms at all but can still spread the virus, 

known as asymptomatic transmission. Others may develop worsened symptoms such as pneumonia or 

respiratory failure. 

              As a result of the highly contagious nature of the virus and the rapid global spread some non-

pharmaceutical interventions (NPIs) were put in place for Covid-19 to help mitigate the spread of the virus, 

reduce the burden on healthcare systems and protect public health. Some of such NPIs included social 

distancing, mask-wearing, hand hygiene and restrictions on large gatherings were implemented to reduce 

person-to-person transmission on the virus. Several researchers have also worked on the impact of some of these 

non-pharmaceutical interventions for Covid-19 using various numerical techniques. Okuonghae and Omame 

(2020) worked on the impact of various non-pharmaceutical control measures (government and personal) on the 
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population dynamics of the novel coronavirus disease 2019 (COVID-19) in Lagos, Nigeria, using an 

appropriately formulated mathematical model. They used numerical stimulations to show the effect of control 

measure specifically the common social distancing, use of face mask and case detection (via contact tracing and 

subsequent testing) on the dynamics of Covid. The numerical simulations of the model showed that if at least 

55%  of the population comply with the social distancing regulations with about 55%  of the population 

effectively using their face masks while in public, the disease will eventually die out in the population and that if 

the case detection rate for symptomatic individuals is raised to about 0.8 per day with about 55% of the 

population complying with the social distancing regulations, it will lead to a great decrease in the incidence and 

prevalence of Covid-19. Aslan et al., 2020 analyzed the dynamics of local outbreaks of COVID-19 by 

developing a SEIQR type deterministic model which uses a system of ordinary differential equations. From the 

data gotten from the outbreak in Hubei they were able to predict the trajectory of daily cases, daily deaths, and 

other features of the Hubei outbreak. Through numerical experiments they observed the effects of quarantine, 

social distancing, and COVID-19 testing on the dynamics of the outbreak. Meanwhile, Enahoro et al., (2020) 

developed a mathematical model to understand the transmission dynamics and control of Covid-19 in Nigeria, 

one of the epicenters of Covid-19 in Africa. The epidemiological implication of the result showed that the 

pandemic can be effectively controlled or even eliminated in Nigeria if the control strategies implemented can 

bring and maintain the epidemiological threshold (𝑅𝑜) to a value less than unity. It was however shown that 

Covid-19 can be effectively controlled using social distancing measures provided its effectiveness level is at 

least moderate. Also, in considering the grave implications of the continuous spread of coronavirus disease, Idisi 

et al., (2021) formulated a SEIHRD epidemic model which consisted of the Susceptible, Exposed, Infected, 

Hospitalized, Recovered and Deceased individuals to gain insight into the disease transmission dynamics with 

impacts of proposing control measures. The model captured the impact of undetected infectious individuals and 

detected hospitalized individuals with saturated treatment on the spread, death and recovery of Covid-19 

patients in Nigeria. Results obtained suggested that decreasing the transmission rate for infective alone is not 

sufficient to eradicate the disease because of the presence of backward bifurcation, and recommended that 

Nigerians must also adhere strictly to COVID-19 protocols in mitigating the spread and demise of the 

coronavirus disease. Onitilo and Daniel (2022) developed a SEAIQR model to examine the transmission 

mechanism of COVID-19 among humans. The population was distributed into Suceptible, Exposed, 

Asymptomatic infected, symptomatic Infected, Quarantined and Recovered humans respectively. The existence 

and stability of disease free equilibrium were established. Results showed that the effectiveness of control 

measures (reducing contact rate and usage of face mask) when being applied. It is noticed that the best option is 

to observe social distance against the use of a mask. The effective approach is the compliance with both control 

measure which are social distancing and usage of mask. It was recommended that there should be educational 

campaigns on the impact of embracing social distancing, wearing a mask, need to be vaccinated as well as the 

enforcement and sanctions for non-compliance with the control measures. 

            In this study, SEIR model that incorporated the Effectiveness of Non-Pharmaceutical Interventions 

(NPIs) on COVID-19 Dynamics is considered. Despite the effort of previous researchers, studying the 

effectiveness of NPIs on COVID-19 dynamics is essential for guiding public health responses, optimizing 

resource allocation, informing policy decisions, managing risks, and complementing vaccination efforts in 

controlling the spread of the virus. 

 

II. MATHEMATICAL/PROBLEM FORMULATION 

In this study, the model was based on the SEIR framework which divides the population into 

compartments: Susceptible (𝑆),  Exposed (𝐸), Infectious (𝐼)  and Recovered (𝑅).  This model explores the 

impact of various NPIs interventions such as mask wearing, social distancing, hand hygiene and quarantine on 

the spread of COVID-19. The human population is born/recruited into susceptible population at a rate 𝑏. The 

term 𝛽𝑆𝐼 𝑁⁄  describes the rate at which susceptible individuals gets exposed to the disease and consequently 

infected as a result of not employing any of the interventions that has been put into place.   

Assumptions: Taking all the subclasses enumerated above into consideration, we assume the following: 

1. Recovered population could still become susceptible. 

2. Exposed persons could become infected after exposure. 
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3. Infected humans could recover or die due to the disease, every other person in the system could die a 

natural death. 

 

Mathematically these interactions are described by a system of ordinary differential equations as shown below: 

𝑑𝑆

𝑑𝑡
= 𝑏 −

𝛽𝑆𝐼

𝑁
− 𝛿𝑆 − 𝜇𝑆 + 𝜏𝑅                                                                                                (1) 

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝜑𝐸 − 𝜇𝐸                                                                                                                  (2) 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼 − 𝜆𝐼 − µ𝐼                                                                                                             (3)  

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝛿𝑆 − µ𝑅 − 𝜏𝑅                                                                                                            (4) 

Subject to the initial conditions 

𝑆(0)  =  9000, 𝐸(0)  =  400, 𝐽(0)  =  50, 𝑅(0)  =  550                                   (5) 

with 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). 

Table 1. Biological description of model parameters 

Parameters Biological significance Values 

b  Recruitment rate 0.00018/day 

µ  natural death rate 0.0002/day 

𝛽  transmission rate without interventions  0.00414 

𝛿  reduction in transmission due to NPIs 0.0115 

𝜎  rate of transition from exposed to infectious class 0.09 

𝛾  recovery rate  0.15 

λ disease-induced death rate 0.0018 

𝜏 rate of transition from recovered to susceptible class 0.075 

 

III. BASIC ANALYSES OF THE MODEL 

3.1. Positivity or non-negativity of Solutions 

 For the model (1) to be epidemiologically meaningful and mathematically well posed, it is necessary 

to establish that all solutions of system with positive initial data will remain positive for all times 𝑡 >  0. This 

will be established in the following theorem. 

Theorem 3.1. Positivity of Solution: 

Suppose Γ = {(S, E, I, R) ∈ R4 ∶ S(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0}, then the solution set {S, E, I, R } is 

positive for all t ≥  0. 

Proof. Observe that from the (3) equation,  

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼 − 𝜆𝐼 − µ𝐼 ≤ −(𝛾 + 𝜆 + µ)𝐼 
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That is 

𝑑𝐼(𝑡)

𝑑𝑡
≥ −(𝛾 + 𝜆 + µ)𝐼 

Integrating the above,  

ln 𝐼(𝑡) ≥ −(𝛾 + 𝜆 + µ)𝑡 + 𝑘 

Imposing the initial condition gives 

𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝛾+𝜆+µ)𝑡                                                                                (6) 

Now from the first equation 

𝑑𝑆

𝑑𝑡
= 𝑏 −

𝛽𝑆𝐼

𝑁
− 𝛿𝑆 − 𝜇𝑆 + 𝜏𝑅 ≥ −

𝛽𝑆𝐼

𝑁
− (𝛿 + 𝜇)𝑆  

That is 

𝑑𝑆(𝑡)

𝑆(𝑡)
≥ −(

𝛽𝐼(𝑡)

𝑁
− (𝛿 + 𝜇))𝑑𝑡  

Substituting for 𝐼(𝑡) and integrate gives 

𝑆(𝑡) ≥  𝑆(0)𝑒
(𝛽𝐽(0)

𝑒(−(𝛾 +𝜆 + 𝜇)𝑡)− 1)

𝑁(𝛾 +𝜆 + 𝜇)
)
𝑒−(𝜇 +𝛿)𝑡                                                           (7) 

Executing similar procedures for the second and fourth equations, gives 

𝐸(𝑡) ≥ 𝐸(0)𝑒−(𝜑+𝜇)𝑡                                                                                          (8) 

𝑅(𝑡) ≥ 𝑅(0)𝑒−(µ+𝜏)𝑡                                                                                           (9) 

It could be observed from equations (6)-(9) that,  

(1) 𝑆(𝑡) ≥ 𝑆(0), 𝐸(𝑡) ≥ 𝐸(0), 𝐼(𝑡) ≥ 𝐼(0), 𝑅(𝑡) ≥ 𝑅(0) when 𝑡 = 0  

(2) max
𝑖

𝜙(𝑡)𝑖 = 𝜙(0)𝑖  ∀ 𝑖 at 𝑡 ≥ 0, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1⋯4, 𝜙 = (𝑆, 𝐸, 𝐼, 𝑅) 

       It follows that all solutions of the model are non-negative. This completes the proof. 

 

3.2. Feasible Region for System Solutions 

 Let us discuss the region in which the total population size exists. It is important to show the region 

where every solution of the model exists, and all such solutions must be bounded. We shall obtain such bound 

for the total population size. This is shown in the proof of the theorem below. 

Theorem 3.2. Feasible Region: 

The sets  

𝛤1 =  {(𝑆, 𝐸, 𝐼, 𝑅) ∈ 𝑅+
4 ∶  0 ≤  𝑆 +  𝐸 +  𝐼 +  𝑅 =  𝑁 ≤

𝛼

𝛿
}                                  (10) 

are feasible solution sets for the model (1)-(4) subject to (5). 

Proof. We recall that the total human population size at time t is given by 

𝑁(𝑡) =  𝑆(𝑡) +  𝐸(𝑡) +  𝐼(𝑡) +  𝑅(𝑡). 

Diff erentiating this with respect to time, we obtain 
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𝑑𝑁(𝑡)

𝑑𝑡
 =  

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 𝑏 − 𝜇𝑆 − 𝜇𝐸 − 𝜇𝐼 − 𝜆𝐼 − µ𝑅 

= −𝜇(𝑆 +  𝐸 +  𝐼 +  𝑅) + 𝑏 − 𝜆𝐼 ≥ 𝑏 − 𝜇𝑁 

𝑑𝑁(𝑡)

𝑑𝑡
≥ 𝑏 − 𝜇𝑁 

and solving for N(t) gives  

𝑁(𝑡) ≥
𝑏

𝜇
 +  𝑁(0)𝑒−𝜇𝑡 . 

As 𝑡 →  ∞, we obtain 

𝑁(𝑡) ≥
𝑏

𝜇
                                                                                               (11) 

Therefore, the threshold human population level is 𝑏 𝜇⁄  . It follows that the feasible solution sets of the model 

remain in the regions: Γ1 = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ 𝑅+
4 ∶ 0 ≤  𝑆 + 𝐸 + 𝐼 + 𝑅 = 𝑁 ≤  𝑏 𝜇⁄ }. Observe that if the 

population is higher than the threshold level, the population reduces to the carrying capacity. If the population is 

less than the threshold level, then the solutions of the model remain in the invariant region for all 𝑡 >  0. 

Therefore, the regions Γ1 are positively invariant. This completes the proof. 

 

3.3. Equilibrium Point 

It is important to obtain the equilibrium points of disease mathematical models. The equilibrium points are very 

important in decision making pertaining the disease-control and possible elimination. There are two types of 

equilibrium points that are considered in the mathematical modeling of infectious diseases: the Disease-Free 

Equilibrium (DFE) point and the Disease-Endemic Equilibrium (DEE) point. 

3.3.1. The Disease-Free Equilibrium Point (DFEP) 

This represents the average size of each of the compartments when the entire population is free from the 

infection. It is denoted by 𝔼0. We obtain 𝔼0 by equating the right-hand side of the model (1) to zero and solving 

the resulting algebraic system of equations. Since we are considering the disease-free equilibrium point, we put 

𝐼 = 0, and which when substituted into the equations gives 𝐸 = 0. We then have: 

𝑆 =
𝑏(µ + 𝜏)

µ(𝛿 + µ + 𝜏)
 and 𝑅 =

𝑏𝛿

µ(𝛿 + µ + 𝜏)
 

Therefore, 

𝔼0 = (
𝑏(µ + 𝜏)

µ(𝛿 + µ + 𝜏)
, 0,0,

𝑏𝛿

µ(𝛿 + µ + 𝜏)
) 

3.3.1. The Endemic Equilibrium Point (EEP) 

The endemic equilibrium point is the average size of each of the model compartments, when the disease has 

become part of the human population. The model admits an endemic equilibrium 𝔼e = (S, 𝐸, 𝐼, 𝑅)e when 𝐼 > 0. 

𝔼e is obtained by equating the right-hand side of the model (1) to zero and solving the corresponding system. 

Thus, we obtain the following result: 

𝔼e = ( 
𝑁𝑐1𝑏1

𝛽𝜎
,−

(𝑁𝛿𝜏𝑏1𝑐1 − 𝑁𝑎1𝑏1𝑐1𝑑1 + 𝑏𝛽𝜎𝑑1)𝑐1

𝛽(𝛾𝜎𝜏 − 𝑏1𝑐1𝑑1)𝜎
, −

𝑁𝛿𝜏𝑏1𝑐1 − 𝑁𝑎1𝑏1𝑐1𝑑1 + 𝑏𝛽𝜎𝑑1

𝛽(𝛾𝜎𝜏 − 𝑏1𝑐1𝑑1)𝜎
,

−
𝑁𝛿𝜏𝑏1

2𝑐1
2 + 𝑁𝛾𝜎𝑎1𝑏1𝑐1 − 𝑏𝛽𝛾𝜎2

𝛽(𝛾𝜎𝜏 − 𝑏1𝑐1𝑑1)𝜎
)                                     

 

Where: 𝑎1 = 𝛿 + µ, 𝑏1 = 𝜎 + µ, 𝑐1 = γ + λ + µ, 𝑑1 = µ + τ 
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Local Stability of the Disease-free Equilibrium  

We shall use the Jacobian matrix J(𝔼0) in establishing the local stability of the disease-free equilibrium. The 

Jacobian matrix which is evaluated at the disease-free equilibrium, is given by 

Theorem 

 The disease-free equilibrium (DFE) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof 

For local stability, the Jacobian matrix with respect to the system (1) at the disease-free equilibrium is given by:   

[
 
 
 
 
 −𝛿 − µ − 𝛬 0 −

𝛽𝑆

𝑁
𝜏

0 −𝜎 − µ − 𝛬
𝛽𝑆

𝑁
0

0 𝜎 −𝛾 − 𝜆 − µ − 𝛬 0
𝛿 0 𝛾 −𝜏 − 𝜇 − 𝛬]

 
 
 
 
 

 

The characteristics equation is given by 

(−𝛬 − 𝜇)(−𝛬 − 𝛿 − 𝜇 − 𝜏) 

(
1

2

√𝑁(𝑁(𝛾 − 𝜎 + 𝜆)2𝑒1 + 4𝜎𝑏𝛽𝑑1)𝑒1 − (2𝜇 + 𝛾 + 𝜎 + 2𝛬 + 𝜆)𝑁𝑒1

𝑁𝑒1

) 

(
1

2

−√𝑁(𝑁(𝛾 − 𝜎 + 𝜆)2𝑒1 + 4𝜎𝑏𝛽𝑑1)𝑒1 − (2𝜇 + 𝛾 + 𝜎 + 2𝛬 + 𝜆)𝑁𝑒1

𝑁𝑒1

) = 0 

Where: 𝑑1 = µ + τ, 𝑒1 = µ(𝛿 + µ + 𝜏) 

𝛬1 = −𝜇 

𝛬2 = −𝛿 − 𝜇 − 𝜏 

𝛬3 = −
1

2

(2𝜇 + 𝛾 + 𝜎 + 𝜆)𝑁𝑒1 − √𝑁(𝑁(𝛾 − 𝜎 + 𝜆)2𝑒1 + 4𝜎𝑏𝛽𝑑1)𝑒1

𝑁𝑒1

 

𝛬4 = −
1

2

(2𝜇 + 𝛾 + 𝜎 + 𝜆)𝑁𝑒1 + √𝑁(𝑁(𝛾 − 𝜎 + 𝜆)2𝑒1 + 4𝜎𝑏𝛽𝑑1)𝑒1

𝑁𝑒1

 

𝛬3 and 𝛬4 holds provided √𝑁(𝑁(𝛾 − 𝜎 + 𝜆)2𝑒1 + 4𝜎𝑏𝛽𝑑1)𝑒1 < (2𝜇 + 𝛾 + 𝜎 + 𝜆)𝑁𝑒1 

Hence from the above the disease-free equilibrium is locally asymptotically stable. This completes the proof. 

3.4. The Basic Reproduction Number 

The basic reproduction number is the average number of secondary infections caused by a single infectious 

individual in an entirely susceptible population during his/her infective period. The next generation matrix 

approach is used to obtain 𝑅0. Let 𝑋(𝑡) = (𝐸, 𝐼) and obtain that 

𝑋′(𝑡) = ℱ(𝑡) − 𝒱(𝑡)  

where: 
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ℱ(𝑡) = (
𝛽𝑆𝐼

𝑁

0
)   and  𝒱(𝑡) = (

−(𝜎 + 𝜇)𝐸
𝜎𝐸 − (𝛾 + 𝜆 + µ)𝐼

) 

Evaluating the derivatives of F and V at the disease-free equilibrium point obtained above, yields 𝐹𝒱−1  as seen 

below: 

𝐹𝒱−1 = (
−

𝛽𝑆𝜎

𝑁(𝜎 + 𝜇)(𝛾 + 𝜆 + µ)
−

𝛽𝑆

𝑁(𝛾 + 𝜆 + µ)
0 0

) 

By solving the dominant eigenvalue of the next generation matrix 𝐹𝒱−1, we get the basic reproduction number 

to be 

𝑅0 = −
𝛽𝑆𝜎

𝑁(𝜎 + 𝜇)(𝛾 + 𝜆 + µ)
 

Therefore, the basic reproduction number of the given system of equations denoted by 𝑅0 is:  

𝑅0 = −
𝛽𝑏(𝜇 + 𝜏)𝜎

𝑁µ(𝛿 + µ + 𝜏)(𝜎 + 𝜇)(𝛾 + 𝜆 + µ)
 

Effective Reproduction Number: The effective reproduction number (𝑅𝑒𝑓𝑓 ) is a critical epidemiological 

measure that offers insights into the transmission dynamics of infectious diseases, guiding public health 

responses during epidemics and pandemics. It signifies the average number of new infections generated by each 

infectious individual at a particular time during such outbreaks. 

In the context of susceptible populations, denoted as 𝑆 and 𝑆∗ before and after factoring in immunity acquired 

through natural infection or vaccination, respectively, the basic reproduction number (𝑅0) is typically expressed 

in terms of epidemiological parameters like the transmission rate (𝛽) and the mean infectious period (𝐷). 

However, we can reframe 𝑅0 by relating it to the effective susceptible population ( 𝑆∗ ) and the standard 

susceptible population (𝑆) through the following relationship: 

0 ≤ 𝑆∗ < 𝑆 

Thus 

0 ≤
𝑆∗

𝑆
< 1                                                                                   (12) 

Multiply (12) by 𝑅0 implies 

0 ≤ 𝑅0

𝑆∗

𝑆
< 𝑅0                                                                           (13) 

From equation (13), the relationship between 𝑅𝑒𝑓𝑓, 𝑅0 S, and 𝑆∗ can be described using the following equation 

𝑅𝑒𝑓𝑓 = 𝑅0

 𝑆∗

𝑆
 

Sensitivity Analysis 

Intervention strategies to reduce the mortality and morbidity due to covid 19 perhaps any other epidemiology 

treatment and control should target the parameters that have a high impact on the effective reproduction number, 

𝑅0. Sensitivity analysis is used to obtain the sensitivity index that is a measure of the relative change in a state 

variable when a parameter changes. We compute the sensitivity indices of 𝑅0 to the model parameters with the 
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approach used by Chitnis et al. (2008). These indices show the importance of each individual parameter in the 

disease transmission dynamics and prevalence. The sensitivity of a parameter, say 𝛽 , of 𝑅0  is defined as  

𝜉𝛽
𝑅0 =

𝜕𝑅0

𝜕𝛽
×

𝛽

𝑅0

                                                                     (14) 

The sensitivity indices of the parameters are thus presented as follows: 

𝜉𝛽
𝑅0 = 1 > 0                   𝜉𝜏

𝑅0  =
𝜏𝛿

(µ +  𝜏)(𝛿 +  µ +  𝜏)
> 0 𝜉𝜎

𝑅0  =  
µ

𝜎 +  µ
> 0 

     𝜉µ
𝑅0  =  − (

𝜏

(µ +  𝜏)
+

µ

𝛿 +  µ +  𝜏
+

𝜇

(𝜎 +  µ)
+

𝜇

𝛾 +  𝜆 +  µ
) < 0 𝜉𝑏

𝑅0 = 1 > 0 

𝜉𝛿
𝑅0  = −

𝛿

𝛿 +  µ +  𝜏
< 0     𝜉𝛾

𝑅0  =  −
𝛾

𝛾 +  𝜆 +  µ
< 0              𝜉𝜆

𝑅0  =  −
𝜆

𝛾 +  𝜆 +  µ
< 0 

 

The analysis revealed that the positively sensitive parameters of the basic reproduction number, R0, are the 

recruitment rate (𝑏) into the susceptible class, the probability (𝛽) that each contact is eff ective enough to cause 

infection, the rate of transition from exposed to infectious class (𝜎 ), rate of transition from recovered to 

susceptible class (𝜏). Thus, reducing the number of susceptible individuals, reducing or eliminating contact with 

infected persons, eff ectively restricting infected humans from adding to the infected population, and ensuring 

that protected individuals remain protected can greatly lower the value of the basic reproduction number (𝑅0) 

and thereby increasing the stability of the disease-free equilibrium. Increasing the values of the positively 

sensitive parameters has the eff ect of increasing the value of the basic reproduction number (𝑅0), which implies 

an increase in the endemicity of the disease since the indices have positive signs. On the other hand, when the 

parameter values 𝜆, 𝛿, 𝛾 and 𝜇 are decreased while the rest of the parameter values are kept fixed, the value of 

𝑅0 decreases. This shows a decrease in the disease endemicity because the indices have negative signs.  

Table 2: Numerical values of sensitivity indices of 𝑹𝟎 

Parameter Sensitivity Index 

𝛽 1.0000 

𝑏 1.0000 

𝜎 0.6570 

𝜏 0.0135 

𝜆 -0.0056 

𝛿 -0.0444 

𝛾 -0.4627 

𝜇 -2.1578 

 

IV. NUMERICAL SIMULATIONS  

We illustrate the analytical results of the model by carrying out numerical simulation of the models 

using a set of estimated parameter values obtained from literature. The system is simulated using ODE solvers 

coded in MAPLE programming language (MAPLE 2022). The numerical simulation of the model under NPIs 

intervention is carried out to investigate the impact of the key parameters on the spread of Covid 19 and how the 

disease can be controlled. The parameter values are presented in Table 1. 

From Fig. 10 through to 13, we see the effect that the natural death rate has on each of the classes. A 

higher natural death rate can reduce the size of the susceptible population over time as individuals leave the 

population due to natural causes which could slow down the spread of the disease. On the exposed class a higher 

natural death rate reduces the number of individuals in this class before they become infectious which leads to a 

lower number of individuals transitioning to the infectious class. On the infectious class the impact of the 

natural death rate depends on the disease induced death rate as shown in Fig. 7. If the death rate from the disease 

is higher than the natural death rate, the infectious class would decline due to deaths but if the natural death rate 

is higher, it may counteract the effect of the disease on the infectious class. The natural death rate affects the 

recovered class by contributing to the number of individuals who leave the infectious class due to death. Fig. 8 

and 9 shows the effect of rate of transition from exposed to infectious class on both the exposed and infectious 

class respectively. A higher rate of transition from the exposed to infectious class means individuals spend less 
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time in the exposed state before becoming infectious. This can lead to a shorter incubation period and a smaller 

exposed class size at any given time as individuals move more quickly into the infectious state. A higher 

transition from exposed to infectious class results in a faster increase in the infectious population as more 

individuals become infectious sooner. This can lead to a more rapid spread of the disease and potentially larger 

peak infectious population sizes.  

The effect of recovery rate on the infectious and recovered classes can be seen in Fig. 6. A higher 

recovery rate means individuals spend less time in the infectious state before moving to the recovered state. This 

leads to a faster decline in the infectious population over time as more individuals recover from the disease and 

move out of the infectious class. Fig. 5 shows the effect of the transition rate from recovered to susceptible 

class. A higher transition rate from recovered to susceptible implies a faster rate at which individuals lose 

immunity and become susceptible again which leads to a decrease in the size of the population. Fig. 3 and 4 

shows the effect of reduction in transmission due to NPIs on the susceptible and recovered class respectively. 

NPIs can reduce the transmission of the disease leading to fewer individuals becoming infected and transitioning 

to the recovered class. This can slow down the rate at which individuals are removed from the population due to 

recovery or death. As the transmission of the disease decreases due to NPIs, fewer individuals become infected 

and the susceptible population may decline at a slower rate or even stabilize. Fig. 2 on the other hand shows the 

effect of transmission without interventions on the exposed class. The absence of NPIs would result in a higher 

transmission rate leading to more individuals becoming exposed to the disease. The exposed class would grow 

larger more quickly reflecting the increased rate of new infections. Overall, the absence of NPIs would 

accelerate disease transmission resulting in more individuals transitioning from the susceptible to the exposed 

class. This would intensify the spread of the disease and potentially lead to larger outbreaks.  

 

 
Fig. 2. Effect of transmission without 

interventions on the exposed class 

 

 
Fig. 3. Effect of reduction in transmission due to 

NPIs on the susceptible class 

 
Fig. 4. Effect of reduction in transmission due to 

 

  
Fig. 5. Effect of transition rate from recovered to 

susceptible class on the recovered class 
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NPIs on the recovered class 

 
Fig. 6. Effect of recovery rate on the infected class 

 

 
Fig. 7. Effect of disease induced death on infected 

class 

 
Fig. 8. Effect of rate of transition from exposed to 

infectious class on exposed class 

 

 
Fig. 9. Effect of rate of transition from exposed to 

infectious class on infected class 

 
Fig. 10. Effect of the natural death rate on 

infected humans 

 

 
Fig. 11. Effect of the natural death rate on 

exposed humans 
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Fig. 12. Effect of the natural death rate on 

recovered humans 

 

 

 
Fig. 13. Effect of the natural death rate on 

susceptible humans 

 

V. SUMMARY, CONCLUSION AND RECOMMENDATION 

In this paper, we examined a SEIR model to explore the effectiveness of non-pharmaceutical 

interventions that have been put into place to help curb the spread of Covid-19. We determined the existence 

and local stability of the disease-free equilibrium along with the existence of the endemic equilibrium. Then, the 

basic reproduction number was computed using the next generation matrix. From the numerical simulations of 

the model, it was shown that when more people comply with the various interventions, the spread of the disease 

is reduced greatly but when the rate of those who don’t comply with such interventions is n the increase it leads 

to an increase in the spread of the disease. 
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