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ABSTRACT : This study focuses on the development and implementation of a Perceptron-based Artificial 

Neural Network (ANN) for optimizing gear shifting in automated transmissions. The primary objective was to 

characterize the vehicle dynamics of a manual powertrain and explore the feasibility of employing artificial 

intelligence to enhance decision-making in gear shifting, particularly in retrofitting vehicles to automated 

transmissions. The ANN was trained and tested using experimental data, demonstrating its capability to learn 

and accurately replicate driving patterns. The results showed that the implemented Perceptron network 

algorithm achieved high accuracy (over 99%) in gear selection across various dynamic driving conditions, 

highlighting the robustness of the neural network. A significant advantage of this approach is its low 

computational cost. The simplicity of the Perceptron model significantly reduces the computational resources 

required, making it particularly suitable for real-time applications where processing power and response time 

are critical. Compared to more complex neural network architectures, the Perceptron-based method offers an 

optimal balance between precision and computational efficiency, providing an effective solution for integration 

into automotive control systems. This study not only advances vehicle performance by accurately modeling 

driver behavior but also presents a cost-effective and scalable approach for implementing advanced vehicle 

control strategies. Future research could further enhance vehicle performance by integrating this method with 

other automotive systems, paving the way for more intelligent, efficient, and adaptive vehicles. 
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I. INTRODUCTION 

Manual transmissions (gearboxes) require the driver to manually operate the clutch and gear selector to 

efficiently transfer engine torque. However, unlike automatic transmissions or continuously variable 

transmissions (CVT), which suffer from torque energy loss due to the slipping nature of torque converters or 

variable-diameter pulleys, manual transmissions provide a direct mechanical link between the engine and 

wheels, eliminating this inefficiency [1]. Manual transmissions also have relatively lower production and 

maintenance costs and are almost half the weight of an automatic transmission. Nevertheless, a manual gearbox 

requires skillful operation to achieve optimal vehicle performance and can be more exhausting, especially in 

heavy traffic, which can be challenging for drivers.In this context, an automated manual transmission combines 

the efficiency of manual transmissions with the convenience of automatic transmissions. Automated 

transmissions use actuators (hydraulic or electric) to automate these processes, eliminating the need for skilled 

clutch operation while maintaining the high power transmission efficiency inherent in manual systems, which 

can be around 96% [2]. This type of gearbox also avoids the complexity and potential maintenance issues 

associated with hydraulic systems, such as oil leakage and viscosity changes with temperature. However, 

converting a manual gearbox to an automated one requires an algorithm to predict the optimal timing for gear 

shifts. In manual transmission systems, the driver manually selects the appropriate gear based on driving 

conditions. Automated transmission systems, on the other hand, utilize algorithms to determine the optimal 

timing for gear shifts, aiming to enhance driving behavior. Despite their advantages, conventional automated 

systems often lack the sophistication needed to make real-time adjustments based on driver needs and 

preferences. 
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With the advent of advanced computational tools, traditional approaches are increasingly being 

supplemented or replaced by machine learning algorithms. These methods enable the analysis of complex 

datasets and the development of accurate models for various aspects of vehicle operation. A growing body of 

research highlights the application of machine learning in automotive systems, particularly in fuel consumption 

estimation and gear shifting optimization. For instance, Abediasl et al. [3] demonstrated the use of machine 

learning algorithms to estimate real-time fuel consumption using on-board diagnostics (OBD) data, achieving 

high accuracy and practical application through models such as Artificial Neural Networks (ANN) and Random 

Forests (RF) in capturing real-world driving conditions.The integration of machine learning techniques into 

automotive systems has also opened other possibilities for optimizing vehicle performance, particularly in areas 

such as regenerative braking. For example, Hwang et al. [4] explored AI-based regenerative braking control 

strategies to enhance driving comfort in autonomous vehicles, demonstrating how a backpropagation method 

can fine-tune vehicle responses to dynamic conditions by estimating braking force limits. Lv et al. [5] 

introduced a hybrid learning approach that combines unsupervised and supervised learning methods to classify 

and quantitatively infer driver braking intensity in electrified vehicles. By utilizing a Gaussian Mixture Model 

(GMM) for clustering and a Random Forest (RF) model for classification, along with an Artificial Neural 

Network (ANN) for continuous brake pressure estimation, this methodology effectively recognized and 

predicted braking behaviors under various driving conditions. This approach improved the accuracy of braking 

intensity predictions and demonstrated the potential for sensorless braking systems, significantly reducing 

system costs while enhancing safety. 

This approach aligns with a broader trend in automotive engineering, where multi-objective 

optimization is increasingly being employed to enhance powertrain components, as demonstrated by Kwon et al. 

[6]. Their work on multi-speed transmissions for electric vehicles underscores the importance of integrating 

efficiency analysis across various powertrain components, including inverters, motors, and transmissions, to 

achieve optimal performance. Shukla and Sharma [7] proposed a neural network-based variable DC-link voltage 

control scheme for induction motors in EV applications, showing significant improvements in torque and speed 

performance across various operating conditions. Their study highlighted the effectiveness of ANNs in 

minimizing inverter switching losses and enhancing overall efficiency by dynamically adjusting the DC-link 

voltage. The application of ANN-based control strategies not only improved motor performance under different 

load conditions but also reduced torque ripples. Kwon et al. [8] further demonstrated the efficacy of integrating 

artificial neural networks (ANNs) into the design and optimization processes of EV powertrains. By utilizing an 

ANN-based optimization process, they effectively reduced computational efforts while enhancing the energy 

efficiency and dynamic performance of multi-motor and multi-speed powertrain configurations. This research 

underscores the potential of ANN-driven methodologies to address the complexities of optimizing vehicle 

systems, particularly in balancing the trade-offs between efficiency and performance. 

Yang et al. [9] demonstrated the application of an ANN model to predict multiple engine parameters, 

including power, emissions, and combustion phasing, using input variables such as engine speed, intake 

pressure, and spark timing. Their study confirmed that a single ANN model could effectively integrate and 

predict various engine metrics, achieving high accuracy with R² values exceeding 0.98. This integration of 

multiple engine parameters into one predictive model underscores the potential of ANNs to enhance engine 

design processes and optimize powertrain control strategies in hybrid vehicles. Similarly, Kanchev et al. [10] 

utilized a NARMA (Nonlinear AutoRegressive Moving Average) neural network to control a hybrid electric 

vehicle's traction system, comprising a battery, ultracapacitor, and Brushless DC motor. Their study highlighted 

the advantages of neural network-based control strategies in managing energy flows, particularly in optimizing 

regenerative braking and improving overall vehicle dynamics. The research demonstrated that these advanced 

control methods could outperform traditional PI controllers, offering better robustness, shorter transient 

response times, and reduced overshoot.The use of artificial neural networks (ANNs) in predicting engine 

performance and emissions has become increasingly prevalent in recent years, driven by the need to optimize 

internal combustion engines for both efficiency and environmental compliance. For example, Park et al. [11] 

employed an ANN to predict the composition of reformed gas in diesel engines equipped with an Exhaust Gas 

Recirculation (EGR) system. Their results demonstrated that the ANN could accurately predict hydrogen and 

carbon monoxide concentrations, leading to optimized reforming processes that significantly reduced NOx and 

particulate matter (PM) emissions. This approach to controlling emissions underscores the broader applicability 

of ANNs in automotive engineering, where control and optimization are important.Similarly, d'Apolito and 

Hong [12] used ANNs to estimate fuel consumption for forklift trucks under various driving cycles, utilizing 

simulations performed with AVL Cruise software. The ANN model, trained on these simulation results, 

effectively predicted fuel consumption across a wide range of driving scenarios, demonstrating the power of 

machine learning in reducing the need for extensive physical prototyping and testing. In another study, Seo et al. 

[13] developed an integrated ANN and vehicle dynamics model to predict instantaneous emissions of carbon 

dioxide (CO2), nitrogen oxides (NOx), and total hydrocarbons (THC) from diesel light-duty vehicles. By 
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leveraging real-world driving data and a multi-layer feed-forward ANN, the study achieved high prediction 

accuracy for these emissions, emphasizing the importance of selecting the optimal combination of input 

variables such as engine speed, engine torque, and vehicle velocity. 

The synthesis and optimization of gearboxes have long been critical areas of research in automotive 

engineering. Saeed [14] demonstrated the effectiveness of a backpropagation neural network implemented on a 

Field Programmable Gate Array (FPGA) for controlling the speed ratios in an automatic transmission gearbox. 

By using a neural network with eight input neurons, five hidden neurons, and five output neurons, the system 

accurately selected the appropriate gear ratio based on the vehicle's real-time speed data. The study highlighted 

the advantages of MATLAB's Levenberg-Marquardt training function and linear activation functions in 

achieving high accuracy and fast processing times. As noted by Petrescu et al. [15], despite the emergence of 

advanced gearbox types such as automatic, semi-automatic, and continuously variable transmissions, the classic 

manual gearbox remains widely used in many vehicles. Optimizing these systems is crucial not only for 

improving mechanical performance but also for enhancing overall vehicle efficiency. For instance, Brazil had an 

estimated car fleet of about 62 million vehicles in 2023 [16], with the majority of them based on traditional 

manual transmission systems. 

The dynamic synthesis of a manual gearbox involves accurately determining its mechanical 

performance under various operating conditions, thereby achieving optimal synthesis regardless of the gearbox's 

status. This study proposes an approach to gear shifting in automated transmissions using a Perceptron-based 

ANN with low computational cost, trained on real-time vehicular data acquired through OBD systems. By 

optimizing the gear selection process—one of the possible options in shifting strategies based on driver 

experience—the model aims to improve the overall driving experience and vehicle performance, while reducing 

the physical demands on the driver and enhancing product acceptability. The methodology and results presented 

in this paper align with current trends in automotive innovation, where the integration of machine learning into 

vehicle control systems is becoming increasingly prevalent. 

 

II. ARTIFICIAL NEURAL NETWORK 

The architecture of a neural network can vary significantly depending on the computational 

requirements needed to solve a particular problem, with its nodes organized into distinct layers. The simplest 

form of a neural network is the perceptron, which consists of an input layer that processes stored information 

into a single output node [17], as shown in Fig. 1. The Perceptron neural network used in this work features an 

input layer, a hidden layer, and an output layer, as illustrated in Fig. 1. The input and output layers have the 

same number of neurons as the respective input and output variables. The number of neurons in the hidden layer 

is determined by summing the neurons in the input and output layers. The weights between the input and hidden 

layers (𝑊𝑖,𝑗
1  and 𝑏ℎ𝑖

) and between the hidden and output layers (𝑊𝑗,𝑘
2  and 𝑏𝑦𝑘

) are initially assigned random 

values, typically within a uniform distribution range of -0.05 to 0.05, as the starting point for training. 

The calculation of the output vector (𝑦𝑘) from the output of the hidden layer (ℎ𝑗) is performed using a 

sigmoid function 𝜎: 

𝑦𝑘 = 𝜎{𝑧𝑦𝑘
} = 𝜎 {∑(𝑊𝑗,𝑘

2 . ℎ𝑗)

𝑗

+ 𝑏𝑦(𝑘)} (1) 

 

 
Fig. 1- Illustration of the artificial neural network architecture 
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The calculation of the hidden layer (ℎ𝑗) from the input data is given by: 

ℎ𝑗 = 𝜎 {𝑧ℎ𝑗
} = 𝜎 {∑(𝑊𝑖,𝑗

1 . 𝑥𝑖)

𝑖

+ 𝑏ℎ(𝑗)} (2) 

 

The weights 𝑊𝑖,𝑗
1  and 𝑊𝑗,𝑘

2  are the coefficients that multiply the values from the previous layer, summed 

together and added to independent terms 𝑏ℎand 𝑏𝑦, respectively, to determine the inputs for the next layer. The 

resulting value at each neuron is then passed through the sigmoid (logistic) activation function, which is 

mathematically defined as: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

 

The calculation of the coefficients is performed using the Back Propagation method, which involves 

determining the gradient of the error function generated during each iteration of parameter adjustment. This 

approach maintains low computational costs, even when a high number of patterns are employed in the training 

phase. 

 

BACKPROPAGATION ALGORITHM 
The calculation of weight coefficients begins with the desired output data and works backward to the 

input data. This iterative procedure starts with random initial values and determines a set of coefficients that 

minimize the quadratic error between the actual data and the estimated results from the ANN.The first part of 

the algorithm determines the final coefficients 𝑊𝑗,𝑘
2 , between the hidden and output layers. The error between 

the actual value 𝑡𝑘 (selected gear) and the estimated gear 𝑦𝑘is given by: 

𝐸𝑦𝑘
= ∑

1

2
(𝑡𝑘 − 𝑦𝑘)2

𝑘
 (4) 

 

Then, the gradient of the error is a vector of the partial derivatives of the weights 𝑊𝑗,𝑘
2 . 

𝜕𝐸𝑦𝑘

𝜕𝑊𝑗,𝑘
2 =

𝜕𝐸𝑦𝑘

𝜕𝑦𝑘

 .
𝜕𝑦𝑘

𝜕𝑧𝑦𝑘

 .
𝜕𝑧𝑦𝑘

𝜕𝑊𝑗,𝑘
2  (5) 

 

Where, 
𝜕𝐸𝑦𝑘

𝜕𝑦𝑘

= 𝑦𝑘 − 𝑡𝑘 (6) 

 
𝜕𝑦𝑘

𝜕𝑧𝑦𝑘

  = 𝑦𝑘(1 − 𝑦𝑘) (7) 

 
𝜕𝑧𝑦𝑘

𝜕𝑊𝑗,𝑘
2 = ℎ𝑗 (8) 

 

The value of ℎ𝑗, from the hidden layer output, is computed using the previous coefficients values. For 

updating the weight coefficients based on the learning rate 𝜂 and momentum 𝛼, the equation is: 

𝑊𝑗,𝑘
2 (𝑝) = 𝑊𝑗,𝑘

2 (𝑝 − 1) − 𝜂.
𝜕𝐸𝑦𝑘

𝜕𝑊𝑗,𝑘
2 − 𝛼. [𝑊𝑗,𝑘

2 (𝑝 − 1) − 𝑊𝑗,𝑘
2 (𝑝 − 2)] (9) 

 

Where 𝑝 represents the iteration number. 

 

The second part of the algorithm involves determining the weight coefficients between the input and 

hidden layers, 𝑊𝑖,𝑗
1 . Similar to the first part, the error gradient is represented as: 

𝜕𝐸ℎ𝑗

𝜕𝑊𝑖,𝑗
1 =

𝜕𝐸ℎ𝑗

𝜕ℎ𝑗

 .
𝜕ℎ𝑗

𝜕𝑧ℎ𝑗

 .
𝜕𝑧ℎ𝑗

𝜕𝑊𝑖,𝑗
1  (10) 

 

Which can be rewritten as: 
𝜕𝐸ℎ𝑗

𝜕𝑊𝑖,𝑗
1 = {∑ (𝑦𝑘 − 𝑡𝑘)[𝑦𝑘(1 − 𝑦𝑘)]. 𝑊𝑗,𝑘

2

𝑘
} . [ℎ𝑗(1 − ℎ𝑗)]. 𝑥𝑖 (11) 
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And the updated coefficients between the input and hidden layers are: 

𝑊𝑖,𝑗
1 (𝑝) = 𝑊𝑖,𝑗

1 (𝑝 − 1) − 𝜂.
𝜕𝐸ℎ𝑗

𝜕𝑊𝑖,𝑗
1 − 𝛼. [𝑊𝑖,𝑗

1 (𝑝 − 1) − 𝑊𝑖,𝑗
1 (𝑝 − 2)] (12) 

 

The algorithm iteratively calculates the sets of coefficients 𝑊𝑗,𝑘
2  and 𝑊𝑖,𝑗

1  until the square error 

converges. 

The learning rate 𝜂 and momentum 𝛼 are parameters that vary between zero and one and are used to 

control the precision and speed of iterations in the network. The learning rate influences the extent to which 

each neuron's weight is adjusted during iterations. A lower learning rate reduces the weight changes between 

iterations, enhancing the network's stability but at the cost of slower convergence [18]. Conversely, increasing 

the learning rate speeds up the calculation process but may cause the network to become unstable. The 

momentum term helps mitigate high variations between iterations, enabling the use of a higher learning rate. 

Momentum smooths out updates by maintaining the direction of the weight changes from previous steps, 

reducing the likelihood of getting stuck in local minima and making the learning process faster and more stable, 

particularly when dealing with complex error surfaces. In this work, the learning rate was set to 𝜂 = 0.3 and the 

momentum to 𝛼 = 0.9. 

 

NUMBER OF MATHEMATICAL OPERATIONS 
The layout of the Perceptron ANN and the backpropagation calculation result in relatively lower 

computational effort. By counting the operations in the algorithm, the key computations include matrix-vector 

multiplications, bias additions, activation function operations, subtractions, element-wise squaring, sums, and 

multiplications in error calculation, as well as multiplications and subtractions during weight updates. 

Additionally, there are loops over the number of data samples and iterations, further influencing the 

computational demand. 

Considering 𝐼 as the number of input neurons, 𝐽 as the number of hidden neurons, 𝐾 as the number of 

output neurons, 𝑁𝑑  as the length of the training data, and 𝑁𝑖  as the number of iterations, the estimated total 

number of operations is: 

𝑂(𝑁𝑖 × 𝑁𝑑 × 𝐼 × 𝐽 × 𝐾) ≅ 

𝑁𝑖 × 𝑁𝑑 × [(𝐼 × 𝐽) + (3 × 𝐽) + (𝐽 × 𝐾) + (3 × 𝐾) + (6 × 𝐽 × 𝐾) + (𝐼 × 𝐽 × 𝐾)] 
(13) 

 

The complexity grows linearly with the number of iterations, data points, and the size of the neural 

network (in terms of input, hidden, and output neurons). This reflects the combined cost of forward and 

backward propagation during training. Other types of ANN require more computational effort, such as a 

Convolutional Neural Network (CNN), which has complexity 𝑂(𝐼 × 𝐿 × 𝑀²), where 𝐿 is the filter size and 𝑀 is 

the feature map size. The 𝑀² term in convolutional operations results in quadratic growth. 

 

III. METHODOLOGY 

The ANN training process involves using vehicle parameters to specify the ideal gear. These 

parameters include engine rotational speed, vehicle speed, and the percentage of torque used, relative to the 

maximum engine torque. All data are obtained in real-time conditions via the OBD-II (On-Board Diagnostics) 

connector from the Freematics One+ (Fig. 2). The data acquisition sample rate was 0.6 Hz. 

 

 
Fig. 2- Photo of the data logger used in the vehicle's OBD-II port 

 

Before the ANN training process, the vehicle speed, engine rotation, and torque data were normalized 

using their maximum values across the entire dataset. Initial random coefficients were generated in Matlab 
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software to train the neural network and determine the coefficients based on experimental vehicle tests. Fig. 1 

illustrates the architecture of the ANN, with the input layer, 𝐽 nodes in the hidden layer, and five nodes in the 

output layer. The number of nodes in the hidden layer was chosen as the sum of the input and output nodes. The 

output layer was configured as a binary response, where the selected gear has a value of one, and the others have 

a value of zero. For example, the first gear is represented in the output layer by [1,0,0,0,0], the second gear by 

[0,1,0,0,0], and so on for the other three gears. Initially, the gear selection was represented by the total 

transmission ratio value for training the neural network. However, the binary format yielded better results with 

the experimental data. 

For this work, the ANN coefficients have a size of 3x8 for 𝑊𝑖𝑗
1  and 8x5 for 𝑊𝑗𝑘

2 . The input vector 

consists of 3 nodes, and the output vector consists of 5 nodes. 

 

IV. VEHICULAR TESTING 

The test vehicle is a passenger car with a manual gearbox, a 1.6-liter flex-fuel engine producing 98hp 

of power and 142Nm of torque. The unladen vehicle weight is 1,063kg. During the tests, the vehicle weight 

varied between 1,120kg and 1,480kg. The total driveline ratio is: 

 

Table 1- Total driveline ratio for each gear. 

Gear 1st 2nd 3rd 4th 5th 

Ratio 15.18 8.34 5.66 4.19 3.09 

 

To train the ANN, input and output data from a dataset were used to train the neural network according 

to the driver's behaviors during data acquisition. The vehicular test was conducted under different circuit 

conditions. In the city circuit, measurements were taken at various times of day and on different days of the 

week in Joinville. All experimental data were collected with the same driver to ensure consistent driving 

behaviors. For testing the artificial neural network, the weights generated during network training were applied. 

 

CITY CIRCUIT 
For data acquisition, the test vehicle followed urban routes, as illustrated in Fig. 3. The collected data 

were divided into two parts, creating two datasets. The first dataset was used to train the neural network, while 

the second dataset was reserved for testing, to verify the accuracy of the neural network after training. 

 

 
Fig. 3- Illustration of the city test route from north to south, passing through downtown. Segments 1 to 2 

were used for training data, and segments 2 to 3 were used for validation data. (Map source: gpx.studio) 

 

This route includes traffic lights and frequent traffic jams, especially during the downtown passage, 

necessitating frequent gear changes. However, the vehicle speed is constrained by city regulations. Fig. 4 

illustrates the vehicle speed (left axis) and total gear ratio (right axis). In this scenario, the driver frequently 

changes gears, which is used to train the ANN. 
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Fig. 4- Illustration of vehicle speed and selected total gear ratio during the city condition test 

 

The experimental data were influenced by traffic flow, resulting in several time intervals with zero 

speed (when the gear was in neutral or the clutch pedal was pressed). To focus on relevant data for gear shifting 

analysis, instances with a speed value of zero were removed from the datasets. Several measurements (18 

datasets) were taken on the city circuit to accumulate data from moments of gear change under different vehicle 

dynamic conditions. However, to include conditions of higher speed and greater engine torque demand, an 

intercity circuit following a highway route was also included in the training data. 

 

INTERCITY CIRCUIT 
Fig. 5 illustrates the route between the cities of Joinville and Curitiba, spanning approximately 138 km. 

This route features variable ground elevations, ranging from around 0 meters to 800 meters, and includes roads 

with significant slopes, some exceeding 6% (or 2.7°). 

 

 
Fig. 5- Illustration of the intercity travel profile between Joinville and Curitiba. (a) Low elevation road, 

(b) Variable elevation road, (c) High elevation road. (Map source: gpx.studio) 

 

The measured data from the intercity circuit, shown in Fig. 6, presents the engine load percentage as a 

function of vehicle speed and the percentage of accelerator throttle opening. In this scenario, the steep slopes in 

the mountain range increase the demand for more engine torque at high speeds. This situation is useful for 

mapping engine performance under severe conditions and serves as a basis for training the ANN under 

boundary conditions. The gear changes are illustrated in Fig. 7, where the vehicle is on the highway between 

400 seconds and 5,300 seconds. The pattern of gear changes is presented in Fig. 8. The relationship between 
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engine rotation and vehicle speed is constant for a specific gear, making it approximately a linear function. 

When the driver shifts gears, the driveline gear ratio is modified, and the slope of the linear function changes, as 

observed in Fig. 8. Clearly, at lower engine rotations, the relationship between vehicle speed and engine rotation 

becomes less distinct. In this case, the third variable – engine torque – is used to accurately identify the currently 

selected gear. 

The data collected under both city and highway conditions were divided into two parts: approximately 

one half was used to train the ANN coefficients, while the other half was used to test the accuracy of gear 

selection based on driver behavior. The training set consisted of 24,655 gear patterns, while the test set included 

19,652 gear patterns. 

 

 
Fig. 6- Illustration of engine load in a plot of throttle percentage and vehicle speed during intercity travel 

 

 
Fig. 7- Selected gear and vehicle speed during intercity travel 

 

 
Fig. 8- Vehicle speed as a function of engine rotational speed during the intercity circuit 
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V. RESULTS 

The ANN model training and validation process were divided into two parts. The first part involved a 

cross-validation evaluation using the K-Fold method. Once cross-validation was complete, the ANN was 

retrained on the entire dataset. Finally, the model was validated using a separate test set that was not involved in 

the cross-validation phase. This final validation provides an unbiased estimate of the model’s performance on 

unseen data. 

 

K-FOLD CROSS-VALIDATION 
The K-fold cross-validation method involves dividing the dataset into 𝐾 equal-sized subsets, where the 

model is trained and validated 𝐾 times, each time using a different fold as the validation set and the remaining 

𝐾 − 1 folds as the training set. This process is repeated for each fold. In this case, the training data were 

randomly split into 6 approximately equal-sized subsets, each containing an average of 6,117 samples (𝐾 = 6), 

resulting in 6 iterations of training, as illustrated in Fig. 9. 

 

 
Fig. 9- Diagram of K-fold cross-validation with 𝑲 = 𝟔 

 

After all 6 iterations, the performance metrics (accuracy and precision) from each validation round are 

presented in Table 2. The averaged values in the table show over 99% accuracy and a high precision (>0.99), 

meaning that, on average, the model correctly predicted the outcome 99% of the time, with consistent 

performance across all validation folds. This high accuracy indicates that the model is highly effective at 

correctly predicting gear selection within the driver-measured datasets. Therefore, the model is robust and 

demonstrates repeatability in training the ANN coefficients. 

 

Table 2- K-fold cross-validation results for each iteration. 

Run Accuracy Precision 

1 99.58% 0.9924 

2 99.32% 0.9910 

3 99.41% 0.9787 

4 99.79% 0.9926 

5 99.92% 0.9971 

6 99.78% 0.9934 

Mean 99.63% 0.9909 

Standard Deviation 0.0022 0.0063 

 

As stable results were obtained during the cross-validation process, all the training data were used for a 

final training session, employing the same hyperparameters as those used during cross-validation. The 

determined coefficients were then applied to the test data for the final validation of the ANN. 

 

VALIDATION WITH TEST DATA 
The test data, illustrated in Fig. 10, is drawn from both city and intercity circuits and includes vehicle 

speed, engine rotation, and engine torque percentage. As previously mentioned, the relationship between these 

parameters for a particular gear becomes more evident when the engine rotation and vehicle speed are higher. 

Conversely, when both parameters are near their lower limits, the distinction between gears is less clear. 

The Mean Squared Error (MSE) or Root Mean Square (RMS) error variation across each iteration is 

presented in Fig. 11. This metric measures the average squared difference between actual and predicted values 

throughout the training process. The process converges after approximately 140 iterations, with the RMS error 

falling below 0.004. 
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Fig. 10- 3D plot of the test datasets. Each gear category is illustrated with different markers and colors 

 

 
Fig. 11- RMS error during ANN training process 

 

The trained ANN coefficients (𝑊𝑖𝑗
1and 𝑊𝑗𝑘

2 ) correspond to the point of lowest error value in the weight 

space, as illustrated in Fig. 12. The error surface, plotted as a function of the weight coefficients, is generally 

non-linear and complex. By varying the coefficients around their trained values, the graph shows a convergence 

to a minimum error point, indicating effective training. This error function typically features a landscape with 

multiple local minima and saddle points, making the training process reliant on gradient descent or similar 

optimization algorithms to find this global minimum. 

 

 
Fig. 12- Visualization of error function around converged values of 𝑾𝟐,𝟐

𝟏  and 𝑾𝟏,𝟓
𝟐  

 



American Journal of Engineering Research (AJER) 2024 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 73 

For the trained ANN coefficients, the ratio of correctly predicted gears to the total number of gear 

patterns in the test dataset was 99.64%. The obtained accuracy was determined by comparing the gear engaged 

by the neural network with the expected gear according to the experimental output data, as illustrated in Fig. 13. 

The patterns that did not match the actual selected gear (indicated as gear zero in the figure) were primarily 

related to clutch operation during a gear change. In certain traffic dynamics, the driver may keep the clutch 

disengaged for an extended period, disrupting the direct relationship between vehicle speed and engine rotation. 

These moments present a challenge in estimating a specific gear, as the driveline is uncoupled from the engine. 

 

 
Fig. 13- Predicted gear by the ANN compared to the actual gear selected during the vehicular test 

 

Table 3 presents a confusion matrix that illustrates the performance of the trained ANN. The matrix 

displays true positives, true negatives, false positives, and false negatives for each gear. In this context, a true 

positive, located along the matrix's principal diagonal, represents an estimated gear that matches the actual 

selected gear. A false negative occurs when the ANN fails to correctly predict the actual gear, indicated by 

elements below the principal diagonal, while a false positive is indicated by elements above the principal 

diagonal. The upper numbers within the matrix represent the count for each category, and the numbers below 

them indicate the percentages relative to the total occurrences of the actual gear. The results in Table 3 show 

that the model's accuracy is relatively high for each selected gear. For all five estimated gears, the percentage of 

correct identifications (true positives) exceeded 99.5%. 

 

Table 3- Confusion matrix for the estimated gear using test datasets. 

  Actual Values 

P
re

d
ic

te
d

 V
a

lu
es

 

 1st 2nd 3rd 4th 5th 

1st 736 

99.7% 

1 

0.1% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

2nd 2 

0.3% 

1385 

99.9% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

3rd 0 

0.0% 

0 

0.0% 

2681 

99.9% 

20 

0.5% 

0 

0.0% 

4th 0 

0.0% 

0 

0.0% 

0 

0.0% 

3731 

99.5% 

13 

0.1% 

5th 0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

11077 

99.9% 

 

From the confusion matrix, the precision is calculated as the ratio of correctly predicted positive 

observations to the total predicted positives, as shown in Table 4. All gear estimations have a precision 

exceeding 99.2%. For recall (sensitivity), which measures the ratio of correctly predicted positive observations 

to all observations in the actual class, the estimated gear also exceeds 99%. The F1-Score, a harmonic mean of 

precision and recall, also provided values over 99% (Table 4). These results indicate that the model is highly 

effective for controlling gear changes in automated gearbox vehicles. 
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Table 4- ANN performance metrics based on true positives, true negatives, false positives, and false 

negatives for each estimated gear. 

Gear Precision Recall F1-Score 

1st 0.9986 0.9973 0.9980 

2nd 0.9986 0.9993 0.9989 

3rd 0.9926 1.0000 0.9963 

4th 0.9965 0.9947 0.9956 

5th 1.0000 0.9988 0.9994 

Mean 0.9973 0.9980 0.9976 

 

For an overall metric, the macro-average was calculated by taking the unweighted mean of the 

precision, recall, and F1-score across all classes, as shown in Table 4. These mean values indicate that the model 

effectively minimizes false positives (precision) and false negatives (recall), demonstrating a balanced 

performance between precision and recall. This balance highlights the model's robustness in selecting the 

appropriate gear under varying vehicle dynamic conditions. 

 

VI. CONCLUSIONS 

This research implemented a Perceptron-based Artificial Neural Network (ANN) to optimize gear 

shifting in automated transmissions, with a focus on the dynamics of a conventional powertrain. The results 

demonstrate that the proposed ANN is highly effective in learning and replicating driving patterns, achieving a 

gear selection accuracy of 99.64% across various dynamic vehicle conditions. The neural network’s robustness 

and precision were further supported by the confusion matrix, where true positive rates for gear prediction 

exceeded 99.5% across all gears, indicating the model's reliability in real-world scenarios. An advantage of this 

approach is its low computational cost. The simplicity of the Perceptron model ensures that it requires 

significantly fewer computational resources compared to more complex neural networks, while still delivering 

high performance. The training process converged with a root mean square (RMS) error below 0.004 after 

approximately 140 iterations, highlighting both the speed and efficiency of the model. This makes it particularly 

well-suited for real-time applications, where processing speed and resource efficiency are critical. The balance 

between high accuracy and low computational demand underscores the model's potential for widespread 

integration into automotive control systems, offering a scalable and effective solution adaptable to various 

vehicle types. The study’s findings open new possibilities for enhancing vehicle performance through intelligent 

control strategies. By reducing the physical demands on drivers and improving the overall driving experience, 

this approach aligns with the broader goals of modern automotive innovation. Future research can build on these 

results by integrating this Perceptron-based method with other vehicle control systems, further advancing the 

development of smarter, more efficient, and user-friendly vehicles. 
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