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ABSTRACT : Stroke is one of the leading causes of disability worldwide. One way to minimize post-stroke 

disability is through rehabilitation therapy, such as Range of Motion (ROM) physical movement therapy, which 

targets joints affected by paralysis due to post-stroke muscle weakness. This therapy aims to maintain or restore 

joint mobility and increase muscle mass. However, finger therapy devices available in the market are still 

limited. In this research, a therapy glove based on soft pneumatic actuators was developed to assist in finger 

flexion and extension movements. Finger muscle strength is classified into three levels—weak, moderate, and 

normal—using a Machine Learning method with the K-Means algorithm. The results showed that the actuator's 

bending angle could reach up to 101 degrees with a maximum air pressure input of 5 Psi. In the experiments, 

the muscle strength scale was measured using 80% of the data, comprising 70% mean equations and 10% 

Machine Learning, yielding adc values of 1070 for the weak level, 1267 for the moderate level, and 1597 for the 

normal level.. 

KEYWORDS Stroke rehabilitation, Range of Motion (ROM), , soft pneumatic actuators, flexion and extension, 
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----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 01-10-2024                                                                             Date of acceptance: 09-10-2024 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION  

Stroke remains one of the leading causes of disability globally, leaving millions of individuals with 

impaired motor function, particularly in the hands and fingers. Post-stroke rehabilitation therapy is essential for 

minimizing the long-term impact of stroke-induced disabilities. Among the various rehabilitation techniques, 

Range of Motion (ROM) exercises are crucial for maintaining and restoring mobility in joints affected by 

muscle weakness. These exercises help prevent joint stiffness, increase muscle mass, and aid in the recovery of 

motor function [1]. The demand for rehabilitation therapies, particularly those targeting fine motor skills such as 

finger movement, is increasing due to the rise in the number of stroke survivors. However, there is a significant 

gap in the availability of effective and accessible finger rehabilitation tools, especially for patients who need to 

continue therapy independently at home [2]. 

In recent years, the use of soft pneumatic actuators (SPAs) has gained attention as a promising solution 

for assisting post-stroke patients in performing rehabilitation exercises [3]. SPAs offer several advantages, 

including flexibility, adaptability, and lightweight design, which makes them more comfortable for patients 

compared to traditional rigid exoskeletons [4]. Moreover, the integration of embedded sensors, such as flexion 

sensors, allows real-time monitoring and precise control of finger movements, enabling more personalized 

therapy [5]. With the advent of Machine Learning techniques, these sensors can collect data on muscle 

performance and classify it into different strength levels—weak, moderate, and normal—based on algorithms 

like K-Means [6][7]. This automated classification enhances the rehabilitation process by adapting to each 

patient’s specific needs and improving recovery outcomes. 

http://www.ajer.org/
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Initial experiments with the SPA device have demonstrated that it can achieve a flexion angle of up to 

101 degrees at a maximum air pressure of 5 Psi, indicating its potential for facilitating finger movements. The 

system was able to classify muscle strength levels based on adc values, with measurements showing 1070 for 

weak, 1267 for moderate, and 1597 for normal strength. These results are promising, as they provide objective 

metrics to track patient progress and adjust therapy accordingly. However, further refinement is needed to 

enhance the precision of the device. During Machine Learning trials, the error rate in classifying muscle strength 

varied from 0% to 13.9%, with the lowest error rate occurring when the predicted data closely matched the 

experimental values. The higher error rates were likely caused by the variation in data between older averages 

and new data, as well as challenges in mapping adc values from 256 to 4095. 

To address these issues, future developments will focus on improving the system’s mapping algorithm 

and refining sensor accuracy. Additionally, enhancing the data storage capacity of the device will allow it to 

track patient progress over time, providing more comprehensive rehabilitation solutions. By optimizing these 

components, the SPA device holds great potential to revolutionize stroke rehabilitation therapy by offering a 

more accessible, adaptable, and personalized treatment option for patients. 

II. METHODS 

The development of the soft pneumatic actuator (SPA) system for post-stroke rehabilitation involved 

several key phases: the design and fabrication of the actuator, integration of the flex sensor, implementation of a 

control system, and data collection using Machine Learning algorithms for muscle strength classification. The 

following sections outline the methodology used in the study. 

 

2.1 Design and Fabrication of the Soft Pneumatic Actuator (SPA) 

The SPA was designed to support flexion and extension movements of the fingers, essential for post-

stroke rehabilitation therapy. The actuator was constructed from silicone rubber, which provides flexibility and 

the ability to inflate and deflate for controlled movement. The actuator measured 10,6 cm in length , 1,8 cm in 

width and 1,3  cm in thickness, optimized for comfortable use on a patient’s hand[7] Fig 2.1 .  

 

 

 
Fig 2.1. soft pneumatic actuator Glove 

 

The actuator was connected to an air pump capable of providing a maximum pressure of 5 psi. At 

pressures above 5 psi, the actuator was found to be at risk of overinflation and potential rupture, limiting its 

operational range to safe air pressures for consistent actuation. 

The flexion achieved by the actuator was measured in degrees of bending. Initial tests showed that the actuator 

could reach a maximum bending angle of 130 degrees under optimal conditions [8]. This degree of bending was 

deemed sufficient for supporting rehabilitation exercises focused on finger movement. 

 

2.2 Integration of Flex Sensor and Muscle Strength Monitoring 

A flex sensor was embedded into the actuator to track the bending angle in real time and monitor 

muscle strength Fig 2.1 . The sensor detected changes in the actuator's curvature, sending the data to a 

microcontroller for analysis. This sensor provided real-time feedback to the control system, which was essential 

for accurately measuring the effectiveness of each movement[9][10]. 

Muscle strength was classified into three levels—weak, moderate, and normal—using data collected from the 

flex sensor. Each strength level was associated with an analog-to-digital converter (adc) value. Weak muscle 

strength corresponded to an adc value of 1070, moderate strength to 1267, and normal strength to 1597, based 

on the centroid values calculated during the experiment. 
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2.3 Machine Learning Implementation for Muscle Strength Classification 

To enhance the precision of muscle strength classification, a K-Means clustering algorithm was used. 

Machine Learning was implemented to analyze data from the flex sensor and classify muscle strength based on 

predefined adc thresholds[11][12]. The dataset used in this study was split, with 10% of the data used for 

Machine Learning-based classification and 70% for mean equation-based calculations. The remaining data was 

reserved for validation and testing. 

During the Machine Learning trials, the error rate was calculated to assess the performance of the classification 

algorithm. The lowest error rate achieved was 0%, while the highest error rate was 13.9%. The variation in error 

rates was attributed to the differences between older averaged data and new data, as well as difficulties in 

mapping adc values from 256 to 4095 during classification. This highlighted the need for further refinement of 

the mapping algorithm to reduce classification errors and improve accuracy. 
 

Table 2.1.  K-Means clustering algorit 

Algorithm :  K-means clustering algorithm to classify muscle strength 

Input: Sensor data (Flex Sensor), number of clusters k: 3 

Output: Clustered muscle strength  (weak, moderate ,Normal) 

1. Initialize K (number of clusters = 3 for weak, moderate ,Normal) 

2. Select 3 random centroids from the dataset as initial centroids 

3. Repeat until convergence: 

   a. Read ADC value from the flex sensor (input = ADC_value) 

   b. Assign ADC_value to the nearest centroid: 

      for each ADC_value:  

          Find the nearest centroid C_j 

          Assign ADC_value to cluster j 

   c. Update centroids: 

      for each cluster j: 

          C_j = average of all ADC_values in cluster j 

   d. Check if centroids have changed significantly: 

      if not changed: 

          stop the loop 

4. Output final clusters and centroids with labels: 

   - Weak: Centroid C_1 

   - Moderate: Centroid C_2 

   - Normal: Centroid C_3 

 

III. RESULTS AND DISCUSSION 

 
A gradual testing approach is required in this research to make sure that all of the tool's components 

can function as intended. The tools and systems that were tested are included in the results and discussion of the 

testing method. The purpose of this testing is to measure, evaluate, and determine the degree of success of the 

tools and systems.  

3.1 Flex sensor test results 

The testing of the flex sensor involved measuring the degree of bending or flexibility and recording its 

output values. The results indicated that as the bending angle of the sensor increased, the corresponding ADC 

value also rose significantly. This relationship suggests that the flex sensor can effectively detect and quantify 

movements, which is crucial for applications such as rehabilitation therapy, where tracking the progress of 

muscle strength and joint flexibility is essential Table 3.1. 

 
Table 3.1. Flex sensor test results 

Trial Sensor (degrees) ADC From sensor 
1 0 1839 

2 10 1680 

3 20 1552 

4 30 1423 

5 40 1335 

6 50 1296 

7 60 1243 

8 70 1183 

9 80 976 

10 90 887 
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Furthermore, understanding the correlation between the bending angle and ADC readings can aid in 

refining the calibration of the sensor. By establishing a precise mapping between the degrees of flexion and their 

respective ADC values, we can enhance the accuracy of muscle strength assessments. This improvement is vital 

for ensuring that patients receive appropriate feedback during therapy, thus facilitating a more effective 

rehabilitation process. As the technology continues to evolve, integrating such sensors into therapeutic devices 

can lead to significant advancements in patient care and recovery outcomes. 

 
Fig 3.1. comparison graph of the test results obtained using a protractor and a flex sensor 

 

Figure 3.1 illustrates a comparison graph of the test results obtained using a protractor and a flex 

sensor. The graph reveals a clear upward trend, indicating that as the angle of bending increases, the ADC value 

recorded by the flex sensor also rises correspondingly. This correlation highlights the sensor's capability to 

accurately track and quantify the degree of flexion, making it a valuable tool for assessing movement in 

rehabilitation settings. Such findings are consistent with previous studies that have demonstrated the 

effectiveness of flex sensors in capturing real-time data on joint angles and movement patterns. 

Moreover, the alignment of results from both the protractor and the flex sensor underscores the 

reliability of the flex sensor as an alternative measurement tool. While traditional methods like protractors 

provide precise measurements, the flexibility and ease of use of the flex sensor can enhance patient engagement 

during therapy sessions. This dual approach not only validates the readings but also opens avenues for 

integrating advanced data analytics into rehabilitation practices, enabling healthcare professionals to monitor 

patient progress with greater accuracy. As technology continues to advance, the adoption of such innovative 

measurement techniques is likely to play a crucial role in improving therapeutic outcomes. 

3.2 Machine Learning Testing Result 

This test is conducted using the A-RES test, also known as the muscle strength test for the fingers, to 

assess the patient's muscle strength level following a stroke. The data collected from the flex sensor yields ADC 

values that are critical for analyzing muscle performance. Subsequently, a machine learning process is employed 

to classify the muscle strength levels based on these ADC readings. This automated approach allows for a more 

efficient and objective assessment compared to traditional methods. A comparison is then made between the 

machine learning results and manual calculations, illustrating the potential benefits of integrating technology 

into rehabilitation practices. 

Table 3.2 presents a detailed comparison between the results obtained through machine learning and 

those derived from manual equations. This comparative analysis highlights the accuracy and reliability of the 

machine learning model in evaluating muscle strength levels. By validating the machine learning outputs against 

manual calculations, the study underscores the importance of utilizing advanced analytical methods in clinical 

settings. Such innovations not only enhance the assessment process but also improve patient outcomes by 

facilitating timely and accurate evaluations of muscle recovery. As rehabilitation technology advances, these 

findings may pave the way for more personalized treatment plans and better monitoring of patient progress. 
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Table 3.2 . Machine Learning Testing Result 

No Keterangan  Machine learning 

Output (ADC) 

equation 

calculation results  

Error(%) 

1.  Weak  1062 1062,6 0,047 

2.  Weak 871 974 5,75 

3.  Normal  1607 1607 0 

4.  Weak 873 974,3 9,17 

5.  Normal 1551 1579 1,7 

6.  Moderate  1297 1297,5 0,03 

7.  Normal 1539 1547 0,5 

8.  Weak 974 1029,5 13,9 

9.  Normal 1578 1547 2 

10.  Normal 1595 1595 0 

11.  Moderate 1257 1278,3 1,66 

12.  Moderate 1236 1251,5 1,23 

13.  Weak 1162 1092 10,5 

14.  Weak 928 889,4 4,3 

15.  Moderate 1308 1320 0,9 

16.  Moderate 1306 1306,9 0,06 

17.  Normal 1638 1616,4 1,3 

18.  Normal 1662 1640,3 1,3 

19.  Weak 965 1001,1 3,6 

20.  Moderate 1425 1426,8 0,12 

 

Table 3.2 presents a comprehensive comparison between the output values obtained through machine 

learning techniques and the results derived from traditional equation calculations in assessing muscle strength 

levels of patients post-stroke. The table categorizes muscle strength into three levels: Weak, Moderate, and 

Normal. Each entry includes the ADC (Analog-to-Digital Converter) values measured for the corresponding 

muscle strength level, the results from equation calculations, and the percentage error between the two methods. 

From the conducted tests, the mean ADC values were found to be 1070 for the Weak level, 1267 for 

the Moderate level, and 1597 for the Normal level. The findings reveal that most ADC values align closely with 

the equation calculation results, demonstrating a high degree of accuracy in the machine learning outputs. The 

error percentages range from 0% to 13.9%, with several instances of negligible error, indicating that the 

machine learning model effectively replicates or closely approximates the traditional calculation methods. For 

example, the output for "Normal" muscle strength with an ADC value of 1607 matches perfectly with the 

equation result, resulting in a 0% error, while another instance of "Weak" muscle strength presents a higher 

error of 13.9%, highlighting potential variability in the assessment process. These results emphasize the 

potential for machine learning to enhance the accuracy and reliability of muscle strength evaluations in clinical 

settings, offering an innovative approach to rehabilitation assessment. 

Fig 3.1. muscle strength scale graph using K-means 

 

From Figure 3.1 and the mean calculations, the centroid values for muscle strength classifications have 

been established: an ADC value of 1070 corresponds to the Weak level, 1267 to the Moderate level, and 1597 to 

the Normal level. These centroid values act as crucial reference points for distinguishing between the varying 

degrees of muscle strength in patients post-stroke. 
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Incorporating these centroids into the machine learning program facilitates the algorithm's ability to 

accurately classify muscle strength. By utilizing these predefined ADC thresholds, the program enhances its 

analytical performance, allowing it to process real-time data from the flex sensor more effectively. This 

integration significantly improves the algorithm's predictive accuracy, contributing to a more comprehensive 

assessment of muscle recovery and rehabilitation progress. As machine learning continues to evolve, such data-

driven methodologies are expected to transform rehabilitation practices, offering more personalized and precise 

treatment options for patients 

 

IV. CONCLUSION 

 

The muscle strength scale design using a flex sensor and Machine Learning resulted in three strength 

levels: weak, moderate, and normal. From the experiment using 80% of the data, where 10% was processed 

through Machine Learning and 70% through mean equations, the centroid values were determined. The weak 

level had an adc value of 1070, the moderate level an adc value of 1267, and the normal level an adc value of 

1597. In testing the bending degree of the soft pneumatic actuator, which measured 8.5 cm in length and 2 cm in 

thickness, it was found that the actuator could achieve a bending angle of 130 degrees under 5 psi of pressure. 

Beyond this pressure, the actuator became overinflated and risked bursting. The Machine Learning tests 

revealed an error rate ranging from 0% to 13.9%. The higher error rate was attributed to discrepancies between 

the old average data and new data, as well as challenges in mapping adc values from 256 to 4095 and vice versa. 
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