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ABSTRACT : This article discusses the development of behavioral compact models for memristive systems. 

Behavioral compact models are a modelling technique used to describe the behavior of electronic devices in a 

simple and accurate way. Memristors are electronic devices that can change their resistance based on the 

electric current flowing through them. These devices have been extensively researched because of their 

potential to revolutionize electronics. Behaviorally compact models of memristive systems have been explored 

in recent years due to their ability to describe the behavior of memristive systems in a simple and accurate 

manner. 
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I. INTRODUCTION 

The emergence of memristors has brought forth a new era of electronic exploration, owing to their 

potential to revolutionize the industry. Memristors, functioning as electronic components, can adjust their 

resistance based on the electric current passing through them [1]. This distinct characteristic has spurred 

extensive research on their potential to replicate synaptic activity like that of the human brain, promising a 

significant shift in electronics.  The complexities of memristive systems pose challenges in developing accurate 

models of their behavior. In recent years, a technique called behavioral compact models has emerged as an 

effective method of concisely and accurately characterizing memristive behavior. 

These models are based on close examination of device behavior, enabling the derivation of a 

mathematical expression to encapsulate it. In the realm of memristors, the application of behavioral compact 

models assumes paramount importance, largely because of the inherent complexities of physical modelling. 

One prevailing approach to constructing behavioral compact models for memristive systems involves 

using an equivalent electrical circuit to depict the system's behavior. This approach has been employed to 

explain memristive systems that range from basic devices to complex multi-layer setups and neural networks. 

The main limitation of this technique is the possibility of not covering all the intricate aspects of the system.  

Even though an equivalent circuit could provide a concise and accurate portrayal of the system, it may not 

comprehensively clarify the fundamental physical processes taking place within it. Attempting to model the 

system's behavior, especially under difficult conditions or within complicated architectures that have many 

layers or feedback loops, can result in inaccuracies due to this limitation. As a result, it is of utmost importance 

to select an appropriate equivalent circuit carefully, ensuring that its accuracy is thoroughly validated through 

empirical experimentation and simulation. 

Moreover, significant progress has been made in developing behavioral compact models that can 

clarify the behavior of memristive systems across various operational regimes, including both linear and non-

linear modes. These models have demonstrated their efficiency in simulating complex memristive systems and 

predicting their behavior under different circumstances. This article presents a method for obtaining succinct 

models based on an equation that defines the state variable of a memristive system. This approach is 

advantageous because the resulting model is useful for both mathematical analysis and simulation purposes. 

 

II. COMPACT MODELLING 

In the field of electrical simulation, a compact model pertains to a simplified and effective portrayal of 

an electronic device or component [2] [3]. Its function is to replicate the component's operation within a bigger 
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circuit or system, devoid of the necessity to assimilate all the internal intricacies and complexities of the actual 

device. Compact models embody the fundamental features of a component that are pertinent to applications, 

facilitating quicker and more manageable simulations. 

 

Typically, these models materialize in the form of mathematical expressions that clarify the 

component's response to different electrical conditions, such as applied currents and voltages [2] [3]. These 

concise models offer considerable worth to the design and analysis of electronic circuits, as they enable the 

effective appraisal of circuit efficiency and behavior before actual manufacturing or implementation of the 

device. 

 

Memristive systems pose significant challenges for modelling their complex and non-linear behavior 

using conventional analytical techniques [4] [5]. Therefore, the development of compact models is crucial in 

describing and comprehending the intricacies of these systems. A compact model provides a simplified portrayal 

of the system's behavior, capturing its significant features and enabling simulation and analysis. 

 

Recently, various methods have been explored by researchers to create compact models specifically 

tailored for memristive systems [6] [7]. These methods include behavioral and empirical modelling. Finally, we 

will maintain an objective and neutral tone throughout. This section will focus on the behavioral modelling 

approach. Technical abbreviations will be explained when first used. Consistent and standard language, along 

with clear logical structure, will be employed throughout. Citations and footnotes will also meet the appropriate 

style guidelines. Efforts will be made to use precise terminology whenever necessary, while avoiding filler 

words and non-technical terminology. Behavioral models are created by relying on the input-output behavior of 

the system, using experimental data or simulations to develop their mathematical representations. 

 

We shall explore the basic principles behind behavioral modelling and illustrate how they can be 

employed to create concise models of memristive systems. Technical terms will be explained on first use, and 

the text will be free from grammatical errors, spelling mistakes and punctuation errors. We shall employ passive 

tone and impersonal construction and avoid the excessive use of lists. Quotations will be clearly marked, and 

filler words being avoided. Our discourse will offer examples of successful use of these principles in memristive 

systems modelling. We will also ensure a logical flow of information by establishing causal connections 

between statements. Additionally, we will use formal language devoid of colloquialisms, informal expressions, 

or biased language. 

 

In the methodology presented Fig.  1, we start by selecting a memristive system characterized by an 

Ordinary Differential Equation (O.D.E.). Our aim is to obtain a concise behavioral model that precisely 

represents the actions of the memristive system. To accomplish this, we use a systematic method. Next, we 

proceed to solve the chosen ODE, which will provide us with a crucial component for the following stages of 

the methodology. 

 

 
Fig.  1: Methodology to develop compact behavioral memristive model. 
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Next, we utilize the established Strukov model [2] to describe the memristive behavior. We evaluate 

whether the model displays the wanted memristive characteristics by merging the acquired solution into the 

Strukov model. Subsequently, we obtain a condensed behavioral model for the memristive system if the model 

successfully captures the memristive behavior. 

Conversely, in certain scenarios, the primary attempt may not yield a memristive model. In these 

circumstances, there are two potential courses of action. First, we could adjust the order of the approximation 

solution to enhance the model's memristive behavior, either increasing or decreasing it. Alternatively, we could 

alter the technique employed for solving the ODE or investigate alternative solution methods that may give 

more satisfactory outcomes. After making the required modifications, we proceed to repeat the procedure by 

integrating the latest solution into the Strukov model and evaluating the resultant model for memristive conduct. 

This iterative process persists until a succinct behavioral model successfully represents the 

characteristics of memristive systems under study. The suggested methodology provides a systematic approach 

for developing compressed models of such systems, ensuring that the ultimate model encompasses their crucial 

features. The main aim of the procedure unveiled in Fig.  1 is to procure a memristive system model 

characterized by a low computational expense. Such a model is essentially a concise representation of the 

system's conduct, as it offers a simplified understanding of its behavior. The compact model is based on a viable 

solution to an O.D.E. that characterizes the memristive system. By carefully choosing a specific solution, a 

model can be developed that precisely depicts the memristive behavior and has improved computational 

efficiency.  

As a result of its reduced computational complexity, simulators that support the modelling of nonlinear 

resistors can now feasibly implement the compact model. This methodology permits effective simulation and 

examination of circuits that integrate memristive systems. The employment of this approach enables us to 

procure a condensed model that attains a harmonious equilibrium between precision and computational 

efficiency, rendering it an advantageous asset for circuit design and analysis. 

 

III. FREQUENCY SCALING 

One of the challenges encountered by current models, including Biolek [3], Affan [4], TEAM [5], 

Batas [6], Prodomakis [7], Rak [8], and others, is their dependence on frequency. Such models are restricted in 

their operational frequency range and encounter performance problems at high frequencies. This constraint is 

apparent in the fact that the PHL region vanishes as the angular frequency $\omega$ approaches infinity [1] . 

To tackle this problem, a technique for broadening the frequency range of a memristive system model 

is illustrated in Fig.  2. The proposed technique permits the customization of pre-existing models to function 

across a wider range of frequencies. The approach requires modifying the current model to consider higher 

frequencies through adjusting specific parameters or introducing additional elements. By doing so, it becomes 

feasible to broaden the frequency range over which the model precisely depicts the behavior of the memristive 

system.  

 
Fig.  2: Methodology to change the operating frequency range of a memristive system model. 
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By utilizing this approach, it is feasible to surmount the constraints enforced by frequency dependence 

and construct models that are applicable to a wider array of scenarios, encompassing those encompassing high-

frequency signals. Consequently, this permits more extensive and precise scrutinization of memristive systems 

over a broader frequency spectrum. The process begins by choosing a model and computing its PHL area. If the 

area can't be obtained, alternative methods are explored. The resulting PHL area value is then scrutinized to 

identify the factors in the memristive equation that influence its area's increase or decrease. The aim is to 

examine the impact of these factors on the passivity criterion of the parametric curve. 

If the passivity criterion is satisfied by the resulting parametric curve after parameter modification, the 

model remains within its original frequency range. If, however, the modified curve fails the passivity criterion, 

this suggests a change in the frequency range has occurred. In such scenarios, selecting a higher frequency value 

permits the model to meet the passivity criterion once again. This process enables effective frequency range 

scaling of memristive system models. This facilitates the analysis and simulation of the behavior in these 

systems over a broader spectrum of frequencies, broadening their potential uses and ensuring precise 

representation in different frequency regimes. 

 
IV. DEVELOPING A COMPACT MODEL 

Fig.  1 illustrates the first step of the methodology, which involves the selection of a memristive system defined 

by an ODE. The condition that must be satisfied by the state variable of the system is as follows: 

 ̇             ( 1 ) 

 

 where γ represents a relationship between constants i.e., independent variables,      denotes a stimulus signal, 

and     is a window function used to constrain the behavior of the state variable. Table  1 shows that Biolek [3] 

and Joglekar [9] use a current stimulus     , while Affan [8] uses the charge      as stimulus. 

  

  

Table  1: Stave-Variable models based on HP memristor. 
Model 

Name 

State 

Variable 

Function 

Window 

Biolek  ̇                       
Joglekar  ̇                        
 Affan  ̇              

 

The process begins with the selection of the O.D.E. definition as employed by Biolek, Affan, and 

Joglekar Table  1. These models utilize the HP memristor equation as a foundation [10], and integrate a window 

function to adjust its behavior. It is worth noting that all three models conform to the overall structure delineated 

in Equation ( 1 ). 
The following step in Fig.  1 is to discover a resolution to the O.D.E. that includes the state variable. In this 

case, the homotopic perturbation method (HPM) [11] [12] [13] is employed. This solution is one of many 

solutions to the HP's memristor equation and is used in the Strukov model \cite{A-HP-1}, resulting in three 

models (one for each state-variable definition, as shown in Table \ref{T-Models-S_V}). These models capture 

the time-varying behaviour through the variable $M(t)$ and can be considered as compact models given their 

representation as one of the multiple solutions derived from the respective state variable equations. The PHL is 

displayed below. 
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Fig.  3: PHL of three different models obtained from methodology proposed in Section II. 

 

It can be observed from Fig.  3 that the methodology described in Section II results in a memristive 

system response [1]. The are of the PHL of Affan (Fig.  3c) exceeds that of the other two. This is due to the 

window function being equal to one. In contrast, Fig.  3a and Fig.  3b has different shapes in their PHL despite 

sharing the same window function. The reason for this is that Biolek uses a value of      [3], whereas 

Joglekar employs     [9]. 

As anticipated within a memristive system [1], the total area of three PHLs showcased Fig.  3 decreases 

as frequency increases. This limitation restricts its practical application in high frequency scenarios. By using 

the methodology described in Section III, it is possible to adjust the operating frequency range. We choose one 

of the three memristive system models employed to generate the plots of Fig.  3. In this case, Joglekar's O.D.E. 

model is considered suitable because it displays a smaller PHL, making it easier to observe a modification in its 

area value. 

      
    

          [       ]        

                           

      [          ]    

  
   

   
⁄  

( 2 ) 

The       
 model comprises an initial resistance value of      , indicating the device's starting 

resistance prior to any input signal or stimulus being implemented, and    denotes the initial condition of the 

state variable in the system. It defines the crucial starting value of the state variable, which determines the 

subsequent evolution and behavior of the memristive system. Both       and    have significant roles in 

characterising the initial state and behaviour of the memristor in the selected model. After choosing the model 

for modification of the operation frequency-range, the subsequent step is to ascertain the area of the PHL. This 

is accomplished by integrating the product of the voltage and current signals within the selected model. The 

resulting numerical outcome of this integration yields a quantitative measurement of the PHL area, which 

constitutes a pivotal parameter for scrutinizing the conduct and efficiency of the adapted model. Through 

analysis of the PHL region, valuable insights can be obtained regarding the characteristics and dynamics of the 

memristive system under investigation. 

     ∫          

 

 

 ( 3 ) 

By examining the exact time frames of the PHL's commencement and conclusion, a symbolic 

representation for its area can be derived. For half a period of the input signal     , if we consider the voltage 

signal defined as                
   , the integral of the product between the voltage and the current results 

in an expression that represents the area of the PHL. Equation ( 3 ) represents the objective relationship between 

the input and output variables of the memristive system and measures the PHL area in a quantitative manner. 

     
     

                           
   

     
 ( 4 ) 

Equation ( 4 ) presents a symbolic expression for calculating the PHL area, which depends on the 

variables found in Equation ( 2 ), used to model a memristive system. It can be observed that the PHL area 
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decreases in proportion to   , suggesting that the impact of frequency ω can be counterbalanced by 

appropriately selecting variable values. In this instance, the parameters    and    are not manipulated due to 

there are representation of the stimulus signal's amplitude and the initial condition of the state variable     , 

respectively. The variables chosen for alteration are  ,    , and   to observe the model's response during the 

third stage of scaling the operating frequency depicted in Fig.  2. The changing area of the model when the three 

variables change are shown in Fig.  4, the frequency for the analyses was    . This examination yields valuable 

insights into the correlation between the parameter values and the resulting PHL area. 

 

Fig.  4: Modification of the numerical value of three variables in memristor model of Joglekar. 
 

The influence of altering the values of the variables  ,    , and   on the area of the PHL is illustrated 

by Fig.  4. It is apparent that the PHL expands with an increase in these variables. Table  2  denotes the specific 

values of  ,    , and  . However, it is worth noting that once the PHL area exceeds a specific threshold, 

specified by the black PHL curve in Fig.  4, the model no longer demonstrates the characteristics of a 

memristive system and fails to satisfy the passivity criterion [1], allowing the increase in the operation 

frequency-range making that model meets the passivity criterion again, and Thus, the frequency range of the 

memristive device can be expanded. 

 

Table  2: Values of maximum and minimum memristance, and te area of Joglekar model. 
 Max Min Area 

                                        

                                        

                                         

                                         

      
                                

       
 200                            

        
                                

        
                                  

                                        

                                         

                                          

                                           

 

Table  2 presents the values for the three adaptable parameters, namely  ,    , and  , alongside the 

corresponding area values of the PHL. Furthermore, the maximum and minimum values of Equation ( 2 ) are 

included for reference purposes. These values serve as crucial indicators for comprehending the conduct and 

traits of the memristive system. The variable names with color subscripts are displayed in the first column of 

Table  2, clarifying the association between the variable values and their corresponding PHL curves in Fig.  4 

and Fig.  5. 

The second column displays the highest memristance value attained from Equation ( 2 ), at    . It is 

important to note that the maximum memristance remains consistent irrespective of any variations in the 



American Journal of Engineering Research (AJER) 2024 
 

 
w w w . a j e r . o r g  Page 19 

variables   and  . The third column indicates the lowest memristance value obtained from Equation ( 2 ), 
occurring at      ⁄ ,               . Typically, the minimum memristance value declines as the 

variable values change, except when         . This behaviour may be attributed to the fact that the 

memristance value at any given time is determined by the derivative            ⁄ , and the minimum value 

occurs when      ⁄ ,              . 

The fourth column displays the PHL area values for each variable value. The results reveal that as Δ 

and     increase, the PHL area generated by Equation ( 2 ) also increases, while decreasing μ leads to a rise in 

the area. Table  2 demonstrates the relationship between the variable values and their impact on the 

memristance behavior, along with the corresponding PHL area. If the area of the PHL cannot be calculated 

directly, another approach is to analyze the output signal of the memristive system, in this model is the voltage. 

Fig.  5 offers valuable insights into the behavior of the output voltage, providing a valuable perspective on the 

system's response. 

 

Fig.  5: Voltage behavior when the variables are changed. 
 

The black line in the diagrams displays the point at which the model no longer shows passive device 

behavior. This phenomenon is apparent through the double valley/peak patterns detected in all three instances. 

When the model displays the double valley/peak pattern, the operation frequency can be increased. This, in turn, 

results in the system modelled by Equation ( 2 ) operating at a higher frequency. Fig.  4 and Fig.  5 provide the 

necessary information to obtain a memristive model with higher operation frequency in Section III. 

If the passivity criterion is satisfied by the resulting parametric curve after parameter modification, the 

model remains within its original frequency range. If, however, the modified curve fails the passivity criterion, 

this suggests a change in the frequency range has occurred. In such scenarios, selecting a higher frequency value 

permits the model to meet the passivity criterion once again. This process enables effective frequency range 

scaling of memristive system models. This facilitates the analysis and simulation of the behavior in these 

systems over a broader spectrum of frequencies, broadening their potential uses and ensuring precise 

representation in different frequency regimes. 

 

V. IMPLEMENTATION OF THE DEVELOPED MODEL 

The memristive system model of Joglekar, has been implemented in a hardware security system [14]. 

This Section illustrates that the models obtained from the methodologies proposed in this paper have potential 

for use in multiple applications. Additionally, memristive devices have demonstrated significant potential in 

improving the performance of electronic filters [15] [16] [17]. Compared to conventional filters, memristive 

filters provide several benefits such as nonlinearity, tunability, and compactness. The implied nonlinearity of 

memristive devices can be effectively employed to accomplish higher-order filtering functions, which are 

inherently hard to achieve through linear filters [18]. Moreover, the adjustability of memristive devices permits 

precise frequency selectivity and parameter modifications, making them ideally suited for adaptive filtering 

applications [19]. Furthermore, the compact size of memristive devices allows for the creation and integration of 

smaller and more efficient filters, making them well-suited for use in portable and wearable devices [20]. 

As seen previously, the integration of memristive devices into filters shows great potential for creating 

high-performance filters that offer adjustable frequency responses and multiple filter outputs using a single 
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circuit topology. This section will detail the design and simulation process of a memristive state-variable filter, 

emphasizing its aptitude for communication systems and biomedical signal processing applications. 

A. Designing a state-variable memristive filter 

A state variable memristive filter uses the ability of a memristive system to change its resistance in adjust 

dynamically the parameters of the filter, which is a distinctive characteristic in signal processing application, 

one of these parameters is the quality factor  . As we know, the quality factor is a parameter used in the 

characterisation of filters, since its value affects the efficiency and selectivity. A high   value indicates a more 

selective filter, while a low   value indicates a less selective bandwidth. Therefore, we start with the definition 

      ⁄  of a state variable filter, where    is the cut-off frequency, and    is the bandwidth. If all the devices 

in Fig.  6 are linear, the quality factor can be calculated as: 

  
         

          
√
    

    
 ( 5 ) 

where          , considering    as an impedance. If       then Equation ( 5 ) can be simplified to 

          ⁄ , this approximation can be used in the filter shown in Fig.  6 when    is a memristive system 

and allows to its instantaneous resistance [4]. 

 
Fig.  6: State-Variable Memristive-Filter, which the memristive element    is modeled using Equation ( 2 ). 

The memristive feedback for band-pass stage is formed by two elements of the ohmic class [21]    and 

  . Resistors   and Capacitors   have the same value. With these considerations in mind, we can study the 

dynamic changes in the filter's quality factor over time. The gain, which is influenced by the memristive 

feedback, plays a key role in determining the filter's response to different types of signals and in assessing the 

overall stability of the system. Bearing in mind that    oscillates between its       ⁄  values (Table  2), 

causing that     also has two values, and therefore the quality factor   also has two values. To simplify the 

calculations, we assume that    is a periodic signal, making that     oscillates between its       ⁄  values. 

          {
      

         
 ⁄           

      
           

 ⁄               
 ( 6 ) 

 

The value of    is chosen in base of the current control value of memristive element    ,  which is 

modeled by Equation ( 2 ), and using the same parameter values that are used on HP memristor [10], then 

   ssumes two distinct values:       
         at    , and       

       . To gain deeper insights 

into the system's behavior, we will conduct simulations of the modified circuit using the software tool Analog 

Insides and subsequently analyze the obtained results. Let us define the quality factor, denoted now as     , for 

the state-variable filter shown in Fig.  6, this definition considers the presence of the memristive system   , 

which introduces time-varying impedance values. The quality factor is defined as: 

     
   

      

 ( 7 ) 
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If Equation ( 6 ) is substituted into Equation ( 7 ), the result is: 

         
 ⁄

 
   

             
 
 

     
    

 ⁄
 

   

             
 
 

( 8 ) 

When        was composed only by linear elements and we fixed the impedance in     , and 

      , the state-variable memristive-filter in Fig.  6 has a quality factor of    . Using Equation ( 7 ) is 
possible to appreciate that      increase when     decrease. With the above in mind, it is possible to make the 

analyses when   , contained in    , is a memristive system. Equation ( 2 ) allows to obtain its      value in 

the initial condition    , in this condition the feedback     shows its maximum value, allowing to calculate 

   

             
 ( 9 ) 

 

The above equation is a valuable tool in determining the appropriate value for the support resistor   . 

Substituting       
 (see Table  2), and          which is the condition for having a quality factor of 

 (    )     , we obtain a that          , the value is approximate to a commercial value of      . 

 

Table  3: Values of   ,     , and corresponding      
. 

Q(t)          
 

                      

                   

                    

 

The result of introducing a memristive element       
 into the positive feedback of the filter in Fig.  6, 

is a periodic time-dependent quality factor      that oscillates between two values, as can be seen in the first 

column of Table  3. Each row in the table corresponds to a different condition of   . The second column shows 

Equation ( 9 ) evaluated for three values of    ;     ,    , and      , and       
 is modelled by Equation ( 

2 ), with the same conditions as        in Fig.  4 and evaluated at    . Values of the Equation ( 2 ) shown in 

Table  2 reveal that the maximum value reached is        , therefore the third column in Table  3 shows 

three different values for       
, this is possible thanks to    being a parallel memristor arrangement in two 

cases, the equivalent resistance is obtained by: 

           
 

 
 

     
 

 

     
   

 

     

 ( 10) 

if                    , then the above equation can be reduced to: 

           
 

    

 
 ( 11) 

where      is modelled by the equation ( 2 ) and   represents the number of elements connected in parallel, 

which is possible when the circuit has an ohmic class element [21]. Fig.  7 shows the impulse response of the 

state-variable filter under two different scenarios: one is when all passive elements in the filter are linear (green 

curve), and the other scenario is when   is a memristive system (red curve). The simulation was done with 

Analogue Insides. 
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Fig.  7: Response to impulse from a state-variable filter. In one scenario    is a lineal resistor (green line), in 

other scenario, is a memristive system (red line). 
 

Six study cases are shown in Fig.  7, the green curve is the response of the filter for three values of Q, 

0.1, 0.5, and 0.9. The red curve is the response of the filter when      takes the values shown in Table  3. We 

can see that the memristive filter (red curve) reaches stability in   ⁄  of time, compared to the linear filter (green 

curve). Applications that require a fast response and a fast transition to a new state show a better performance 

when containing a memristive system. The speed in the response of the filter to disturbances in the input signal, 

is not the only benefit of   , if we see the       
 reached by the filter in Fig.  7, when the memristive system is 

present the overshoot is reduced by 2. Reducing the overshoot magnitude generates; less stress in the elements 

and improves the signal quality. 

Fig.  7 shows that the model generated using the methodology proposed in section II can be used in the 

AnalogInsydes simulator and allows the mathematical analyses, both essential in electronic design. In reference 

to filter design, obtaining the stability of the system is useful, one method to know if a system is stable is to 

analyses its poles and zeros graphs. 

B. Poles and Zeros 

In the realm of filters, the concepts of poles and zeros are of great importance in understanding the frequency 

response of a system. Poles and zeros manifest themselves as points within the complex plane and provide 

valuable insight into the inherent characteristics of the filter. Poles are defined as the frequency values at which 

a filter's response diverges to infinity or approaches zero. They represent the frequencies at which the system 

exhibits maximum sensitivity or resonance. The presence of poles plays a crucial role in shaping and 

determining the characteristics of the filter's frequency response. Zeros, on the other hand, correspond to the 

frequencies at which a filter's frequency response is null or zero. They are the frequencies at which the system 

does not respond or effectively suppresses certain components of the input signal. Zeros play a crucial role in 

shaping the behavior and characteristics of the filter and have a significant impact on its overall performance. 

The positions of the poles and zeros within the complex plane play a crucial role in shaping and 

defining the characteristics of a filter. Fig.  8 visually illustrates the varied placement of Poles and Zeros across 

the complex plane, covering both the left half of the plane. The strategic distribution and configuration of the 

poles and zeros has a significant effect on the resulting frequency response and overall stability of the filter. 

 

Fig.  8: Poles and Zeros to the left, the system is stable, and when they on the right side of the plane the system 

is unstable. 
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Fig.  8 shows the distribution of poles and zeros for both stable (left) and unstable (right) systems. 

Techniques used in the field of state variable filters to determine these locations include the diagonalization 

method, stability analysis, Laplace transform and parametric design. The diagonalization method focuses on 

transforming the state coefficient matrix into a diagonal form, allowing poles and zeros to be extracted directly 

from the matrix elements. Stability analysis, which is crucial for pole determination, examines the state 

coefficient matrix to assess system stability by evaluating the real parts of the poles. The Laplace transform, a 

fundamental tool, derives the transfer function and helps to identify poles and zeros from the characteristic 

polynomial roots. 

In addition, parametric design defines filter characteristics through parameters such as cut-off 

frequency. By optimizing these parameters, poles and zeros can be precisely located, allowing filter designs to 

be tailored to specific requirements. Together, these methods provide a systematic approach to modelling and 

controlling filter behavior, ensuring optimized performance for a wide range of applications. These techniques 

are among the most widely used in the analysis and design of state-variable filters. 

By including a memristive elements in the analysis, we can explore the impact of their unique 

properties on the behavior and performance of state-variable filter. This approach opens new possibilities in 

filter design and provides valuable insights into the benefits and challenges of integrating memristive elements 

into practical applications. To determine the poles and zeros of the system shown in Fig.  6, we start defining its 

transfer function. 

     
   

  

   

 

   

 
 

  
   

 

   
  

 ( 12) 

where    is the gain of filter, and    is the cut off frequency. To determine the poles the denominator is 

evaluate for a value      , obtaining: 

                    ( 13) 

By evaluating the denominator of           
, we note the presence of two poles. Complementing the 

poles, we can also determine the zeros of the system by looking at the numerator of the transfer function. The 

zero is obtained: 

         ( 14) 

The system represented by Fig.  6 exhibits one Zero value, when all the passive elements are lineal 

devices. The positions of the Poles and Zeros are depicted in the S-plane by plotting the values Equations ( 13) 
and ( 14). 

 

 
Fig.  9: Poles and Zeros of the state-variable filter with lineal passive elements. 
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Fig.  9  shows the distribution of poles and zeros for typical state-variable filter. The poles are to the 

left of the S-plane, this means that all frequencies causing divergence are confined to this area. This 

characteristic indicates that the system is stable as there are no infinite responses at any frequency when   

   . For obtain poles and zeros of a state-variable memristive-filter i.e.,    in Fig.  6 is a memristive device. To 

obtain the transfer function we use the MNA stamps, assuming    as an ohmic element. To solve the matrix, we 

use the diagonalization technique [22] [23], and the resulting node voltage     is used to obtain its transfer 

function, and finally we obtain the poles and zeros. 

 

 

Table  4: Poles and zeros of the state-variable memristive-filter 

Poles Zeros 

           
                         
                       
                                      
                                                   
                        
                                    
                           

 

Table  4 gives the specific values for the system's poles and zeros, giving precise information about 

their frequencies. These values are of paramount importance in analyzing and understanding the behavior and 

characteristics of the state-variable memristive-filter. To aid understanding and visualization, the corresponding 

poles and zeros are plotted graphically. It is evident that the inclusion of a non-linear element in the system 

leads to the appearance of additional poles and zeros. This phenomenon is illustrated in the following figure. 
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Fig.  10 displaying a distinct Poles and Zeros at the origin, this indicates that the system's response 

frequency becomes zero at the zero-frequency point and results in a 180° phase shift. Consequently, the system 

can effectively reject signals at zero frequency, thereby contributing to its frequency-selective behavior. 

Additionally, two Poles and two Zeros are situated along the imaginary axis. This attribute signifies that the 

system's frequency response wholly fluctuates with imaginary frequencies, the existence of these Poles and 

Zeros causes oscillations or resonances within the system, which illustrates their important function in shaping 

the system's performance at certain frequency components. Finally, two additional Poles on the left side of the 

complex plane, showing us the frequency at which system’s response decay exponentially, indicating that 

system can reach a steady state, this stability characteristic is of utmost importance for ensuring the reliable and 

predictable operation of the system. 

Poles and zeros analyses demonstrate that the implementation of a memristive system results in an 

increase in the quality factor, as illustrated in Table  3. The real-time dynamic adjustment of the quality factor Q 

has valuable applications in various contexts. In wireless communications, it enables the filter to adapt to 

changing channel conditions, enhancing selectivity and spectral efficiency. In audio and signal processing 

systems, the aim is to optimize the filter response for variable acoustic conditions. Control systems require 

dynamic Q adjustments to respond to sudden changes in system conditions. RF electronics, image processing 

instrumentation, and sensor networks can benefit from real-time, selective filter response improvements that 

adapt to changing application needs, ultimately maximizing system performance. 

VI. CONCLUSION (10 BOLD) 

The proposed methodology for obtaining a streamlined behavioral model and changing the operational 

frequency range in a memristive system can generate a minimum of three concise models. One of the generated 

models was employed to create a state-variable memristive filter, which exhibited superior performance 

compared to a system with similar impedance characteristics but without a memristive system. Furthermore, the 

same model and parameters used in the state-variable memristive-filter were employed to analyze low 

computational cost and other applications. 

Having a variety of compact models that function in various applications and exhibit diverse behaviors 

in their PHL can be beneficial for computed-aided design (CAD) because it enables the development of 

memristive system libraries that can serve in different circuit applications. This approach also provides different 

operational working conditions between models, namely the maximum/minimum memristance and the 

operation frequency range. 
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