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ABSTRACT : The number of wind turbines will be doubled in five years with carbon-peak and carbon-neutral 

commitment. It’s a big problem that power generation and safety performance can be decreased because the 

blades of wind turbines in high latitudes often cover ice in winter. This paper proposes a hybrid model based on 

deep neural net and transfer learning which can detect whether blades of wind turbines in remote areas are 

been covered ice by supervisory control and data acquisition system (SCADA). In this study, both features and 

detecting model of blade icing are transferred between different wind turbines via transfer learning. In order to 

get more accuracy, some features of blade icing are transferred, which are testified more effective in previous 

studies. It’s impossible that the models of dozens or even hundreds wind turbines in park are all trained 

separately, so it’s necessary to build a general and effective model to detect icing of blades, which is trained 

from some typical wind turbine and then carry out to others. The initial model is obtained from 15# wind 

turbine by deep neural network (DNN), and then transfer to 21# wind turbine. Via dozens of experiments, a 

better model is obtained, which is testified more effective, lower error warning, more practical.  
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I. INTRODUCTION 

In 2021, the Chinese government clearly put forward the goal of "carbon peak and carbon neutrality". 

Therefore, the electric power industry will become the main battlefield of energy transformation, and the 

construction of new energy will be further accelerated 
[1]

. Wind power is one of the most important components 

of new energy. By the end of May this year, China's installed capacity of wind power was 290 million kW, an 

increase of 34.4% year-on-year 
[2]

. Most wind power is installed in the middle and high latitudes, where 

conditions are harsh. In these areas, affected by cold weather conditions in winter, ice covering phenomenon of 

wind turbines is inevitable, which causes errors in wind speed measurement and control, reduces wind turbine 

output, causes mechanical and electrical faults, threatens the safe and reliable operation of wind turbines, and 

even affects the development of wind power 
[3,4,5]

. 

At present, there is no mature commercial product on how to protect the wind turbine from the impact 

of icing 
[3]

. Therefore, scholars from various countries have conducted in-depth research and put forward many 

research methods. Literature
 [3]

 points out that active blade heating is a reliable method to prevent the effect of 

ice coating, which is often used together with passive hydrophobic coating to reduce anti-ice energy 

consumption. It is also pointed out that the combination of dual anemometer and relative humidity measurement 

is an economical and reliable method for ice covering detection in the stage of wind resource assessment. After 

being put into operation, it is recommended to use ice-covered sensor and power curve method. However, 

literature 
[5]

 has conducted an in-depth study on the performance attenuation of wind turbine blades using 

superhydrophobic coating to prevent icing. On the premise of not adding deicing device, Wei Zhenhai and other 

researchers applied the operation data of wind turbineSCADA system to judge the icing situation of blades 

through monitoring information, and proposed corresponding solutions 
[6]

. With the powerful computing power 

of computers, many researchers have proposed various artificial intelligence methods to remotely monitor wind 

turbineicing. In literature 
[7]

, deep automatic coding network was used to extract characteristic variables related 
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to ice cover, and a remote monitoring model of ice cover was established. Literature 
[8]

 firstly selects two kinds 

of data highly related to leaf icing, and then uses optimized support vector regression to predict them. Finally, 

BP self-clustering algorithm is used to predict blade icing fault by multi-source fusion. The above methods are 

simple and do not involve the problem of model transfer and application to other wind turbines. If the model is 

only derived from a certain wind turbine, without considering transfer, there is more or less the problem of over-

bridging, and the universality needs to be improved and further discussed and studied. 

In conclusion, in the large-scale wind farms have hundreds of wind turbines, can't be installed each 

wind turbine ice monitoring equipment (high cost), also can't be set up for each specific model (training model 

to observed data of ice per all observations are not feasible), so in this paper from the observation of a few 

typical wind turbine of ice in the data, Based on the deep neural network technology, a wind turbine icing 

sensing model is established. The proposed model not only has high accuracy, but also has good generalization, 

which can be applied to other wind turbines by transfer learning technology, and also has high prediction 

accuracy. Therefore, this paper focuses on how to establish a portable ice covering monitoring model, and 

studies the transfer method, transfercontent and transferevaluation index. 

Our research group has previously studied the influencing factors of icing, including the causes and 

performance factors of icing, analyzed the correlation between each factor and icing, and published relevant 

literature 
[9]

. This study transfers the influencing factors of ice covering in literature
[9]

, and the experiment shows 

that it can greatly improve the accuracy of the model and has good mobility. In addition, considering the 

practical performance, this paper tries not to take the accuracy rate of prediction as the only goal, but to establish 

an index system for comprehensive consideration based on the prediction accuracy rate, rate of return and 

missing rate, so as to comprehensively evaluate the advantages and disadvantages of the established model. 

After many experiments, this paper obtains a good icing model, which not only has a high icing 

accuracy, but also has a good accuracy when transfer to other wind turbines. What is more valuable is that the 

missing rate of icing alarm is better, which greatly improves the practicability of the model. The experimental 

results show that transfer learning is feasible in icing warning. This research on wind turbine icing prediction 

based on transfer learning technology can also provide reference for other related transfer learning research. 

 

II. DATA PREPROCESSING  

2.1 Data source 

The State Grid Corporation has built a large wind farm in the north of China, with hundreds of wind 

turbines and complete data. After careful selection, two wind turbines have relatively complete operation data 

and icing record, which can be used as the data training object of the wind turbine icing model. That is, the 15# 

wind turbine data is used to train the icing sensing model, and then the 21# wind turbine data is substituted into 

the model for testing, so as to test the transfer ability and prediction accuracy of the model. 21# wind turbine is 

just a randomly selected wind turbine in the wind field, and it is used to verify the characteristics of icing and 

the transfer ability of icing model, so it has certain representativeness and credibility. Of course, in order to 

actually test the universality of the icing model, it is necessary to verify the vast majority of types of wind 

turbines in the wind field one by one. 

The wind turbine SCADA (Supervisory Control and Data Acquisition) system includes 26 monitoring 

points, which can be regarded as the 26 characteristics of the wind turbine, as shown in Table 1 below. 

 

Table 1 Wind turbine detection variables 

no scada variables no scada variables 

1 wind_speed 14 pitch1_moto_tmp 

2 generator_speed 15 pitch2_moto_tmp 

3 Power 16 pitch3_moto_tmp 
4 wind_direction 17 acc_x 

5 wind_direction_mean 18 acc_y 

6 yaw_position 19 environment _tmp 
7 yaw_speed 20 int_tmp 

8 pitch1_angle 21 pitch1_ng5_tmp 

9 pitch2_angle 22 pitch2_ng5_tmp 
10 pitch3_angle 23 pitch3_ng5_tmp 

11 pitch1_speed 24 pitch1_ng5_DC 

12 pitch2_speed 25 pitch2_ng5_DC 
13 pitch3_speed 26 pitch3_ng5_DC 
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The composition of the trained SCADA data is shown in Table 2 below. 

 

Table 2 Data distribution of wind turbine samples  

wind turbine data number percent 

15#wind 

turbine 

Normal data 170000 88% 

Icing data 23000 12% 
Combined data 193000 100% 

21#wind 

turbine 

Normal data 160000 94% 

Icing data 10000 6% 
Combined data 170000 100% 

 

2.2 Data set partitioning 

15# wind turbine contains more data, so the data of 15# wind turbine can be used as the training set. 

The 21# wind turbine is used as the transfer object to test the transferability of the model. 

When 15# wind turbine is used as the training model dataset, in order to improve the accuracy of deep 

learning training, the dataset needs to be divided into training set, validation set and test set to train a better 

model and conduct cross-validation. The training set is used to train the model; Validation set is used to correct 

the model during training. Test set to test the training model. In view of the relatively large data sets, a ratio of 

8:1:1 among the three data sets is better 
[10]

. The subsequent experimental results show that a more ideal model 

can be trained after this partition. 

 
Fig. 1 Distribution diagram of  train set, test set and validation set 

 

2.3 Normalized treatment 

In general, the value difference of each component in the sample is large, which will affect the 

prediction result because of the numerical difference. In order to reduce the impact of this numerical difference, 

it is necessary to normalize the sample data. 

There are many Normalization methods, including Min-max Normalization and Z-score Normalization 

methods 
[10]

. Considering that the model will be applied to real time prediction in the future, it is impossible to 

obtain the standard deviation in real time, so the Min-max standardization method is chosen.We use the min-

max method to map the value of the characteristic variable to the range [0, 1] 

 

* min

max min

x
x




   (1) 
III. ICE COVERING DETECTION ALGORITHM 

3.1Feature Transfer 
Wind turbine blade icing is a complex and changeable process, which is not only related to 

environmental factors, such as temperature, wind speed and humidity, but also related to the running state of the 

wind turbine, such as speed and Angle. When using data analysis methods to build predictive models for wind 

turbine icing, the biggest challenge is to find out which features are associated with icing. 
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Relevant features can be transferred to this study by referring to previous research results of wind 

turbine icing and using transfer learning knowledge. Transfer learning is a new machine learning method that 

uses existing knowledge to solve problems in different but related fields. It relaxes two basic assumptions in 

traditional machine learning :(1) the training samples used for learning and the new test samples meet the 

conditions of independent and identical distribution; (2) sufficient training samples must be available to learn a 

good classification model 
[11,12]

. In literature
 [13]

, the transfer learning method was used to transfer the 

vocalization features related to domestic cats previously studied to the current study, which achieved good 

results and fully proved the feasibility of feature transfer. 

In this paper
 [9]

, feature vectors related to ice cover are deeply discussed, and a method to find feature 

vectors related to ice cover is proposed, which has high practicability. According to his research results, it can 

be known that the vector and correlation degree related to ice cover are shown in Table 3 below. 

 

Table 3 Variables correlated with icing 
no the feature vectors relevance 

1 yaw_position 0.433590082 

2  environment_tmp -1.076909987 

3  wind_Speed_Face 0.898209381 
4 pitch_angle -0.632307849 

5 TD_inttmp 0.246596158 

6 power -2.162700181 
7 TD_moto 0.348225667 

8 wind_direction -0.170664741 

9 wind_Speed_Face_Mean 0.36449363 
10 acc_x -0.084550267 

11 wind_speed 0.579723039 

12 int_tmp 0.26705721 

 

3.2Correlation analysis of icing characteristics 

The characteristics of each monitoring point in the wind turbine SCADA system are some of the 

factors that constitute the wind turbine icing, such as the ambient temperature; Some factors are obvious 

differences compared with normal values after wind turbine icing, such as wind turbine output power, which can 

be called icing performance factors. Both genetic factors and performance factors can be used as the 

characteristics of ice cover monitoring model. 

 

(1) Factor analysis of icing performance 

The working process of wind turbine is that the wind turbine blade is driven by the outside wind, 

driving the generator in the wind turbine to work and generate electricity. When the wind turbine blade is 

covered with ice, the output power of the motor under the same wind force will be affected. Figure 2 below 

shows the distribution of wind speed wind_speed and wind turbine output power of sample 15# in the dimension 

of time. 

As can be seen from the bottom of Figure 2, under the condition of non-icing, the wind speed is 

basically in direct proportion to the output power of the wind turbine within a certain range. The middle figure 

just reflects that there is no proportional relationship between the wind speed and the output power in the ice-

covered state, and the wind speed is mainly concentrated in the low-power area. This indicates that refreezing 

does reduce the wind turbine power output. 
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Fig. 2 Relation between wind speed and power of wind turbine 

Fig. above: Distribution on time of wind speed(gray points) and power(red points) 

(The upper horizontal lines in the figure are time periods of icing of wind turbine) 

Fig. middle: Relation between wind speed and power in icing 

Fig. Below: Relation between wind speed and power 

This relationship is more intuitively reflected by enlarging part of Figure 2, as shown in Figure 3. 

 
Fig. 3 Partial magnification of relation diagram between wind speed and power  

(Circle part is icing) 

It can be clearly seen from FIG. 3 that the wind speed and the output power of the wind turbine 

basically overlap under the condition of non-icing, while the wind speed is above the output power after the 

wind turbine is iced, indicating that the output power of the wind turbine is significantly reduced under the same 

wind speed after the wind turbine is iced. 

The aerodynamic characteristics of the wind turbine will be affected obviously after icing. For 

example, pitch_angle, when the wind turbine is iced, the probability distribution of the large value is in the low 

value range around 0.2, as shown in Figure 4 below. 

 
Fig. 4 Relation between pitch angle and power 
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(2) Analysis of cause factors of icing 

According to common sense, the wind turbine blade icing needs to meet certain conditions: the ambient 

temperature is reduced to below freezing point; The air contains a certain amount of water vapor (humidity 

meets certain conditions); There is a certain temperature difference between inside and outside the wind turbine; 

Blade metal heat dissipation fast and so on. 

Figure 5 shows the influence of ambient temperature on wind turbine icing. 

 
Fig. 5 Relation between ambient temperature and power 

 

It can be seen from the figure that most of the icing is concentrated in the low-temperature area, but on 

the contrary, the low-temperature area is not necessarily covered with ice, and there are other factors that affect 

the icing. 

A temperature difference feature (environment_TMP-int_tmp) is constructed by using 

environment_tmp and int_tmp in the wind turbine SCADA system. Figure 6 shows the influence distribution of 

the temperature difference feature of this structure on wind turbine icing. 

 
Fig. 6 Relation between temperature difference and power 

 

As can be seen from the figure, the large probability distribution of temperature difference value in the 

ice-covered state is in the high value interval (circled part in the above figure and the middle figure). 

In order to improve the prediction accuracy of the model, it is sometimes necessary to add some 

features that are not so obvious associated with icing. Here, no more details. In the experimental part below, the 

training results of the transfer feature model and the ordinary feature model will be compared. 
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3.3Deep neural network model 

Obviously, there is a nonlinear relationship between wind turbine icing and each feature, and deep 

neural networks can theoretically bridge all kinds of nonlinear relationships 
[14,15,16].

 To this end, a deep neural 

network as shown below can be constructed. 
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Fig. 7 DNN model 

(1) Hidden layer activation function 

The contractor shall provide at the reasonable satisfaction with ReLU (Rectified Linear Units) function 

for the hidden layer in the following form: 

 
  max(0, )f x x

 (2) 
Compared with traditional neural network activation functions, such as Logistic sigmoid and TANh, 

ReLU function has the following advantages: 

 More efficient gradient descent and backpropagation, and avoid the problem of vanishing gradient; 

 Reduces the amount of computation and simplifies the process. 

 Increasing sparsity decouples the highly coupled variables and tolerates noise, making the model more 

robust. 

 

(2) Number of hidden layers 

Under normal circumstances, the number of hidden layers should not be too much. After several 

experiments, it is found that for the wind turbine icing samples, if the number of layers is small, the nonlinear 

bridging is not very good, the accuracy of the constructed model is not very good, and the convergence is slow. 

In the subsequent experiments, a deep neural network model with five hidden layers was selected, and the effect 

was good. 

(3) Output layer design 
Whether the wind turbine is iced or not is a dichotomous prediction problem, so the output layer selects 

the logistic regression model. Logistic regression is a classical linear classification model, and Sigmoid function 

is used to calculate the probability value of binary classification 
[17]

. 

 

1
( )

1 x
f x

e


  

(3) 

(4) Cost function design 

The cost function adopts the cross-entropy function 
[17]

, and the form is as follows: 

 
1

1
H(X)=- ( ) log( ( ))

N

i i

i

p x q x
N 

  (4) 

Where 
( )ip x

represents the true label value at samplei; ( )iq x represents the forecast probability at 

sample. 
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Ice covering is a dichotomous classification problem, so the corresponding cross-entropy function can 

be expressed as: 

 
1

1
( ) ( log( ( )) (1 ) log(1 ( )))

N

i i i i

i

H X y q x y q x
N 

      (5) 

Where yi is the true value at sample i, 1 or 0; 

q(xi) represents the probability that the predicted value at sample i is 1, then 1- q(xi) is the probability 

that the predicted value is 0. 

Clearly, in machine learning, cross-entropy can be expressed as the difference between the true 

probability distribution and the predicted probability distribution. The smaller the cross-entropy value is, the 

better the prediction effect of the model is. 

(5) dropout parameters 

In order to prevent the overfitting problem of the neural network trained model, dropout can be added 

to the hidden layer to discard neurons with a certain probability, so as to reduce the overfitting of the model to 

samples and enhance the transferability of the model 
[18,19]

. 

The 5-layer deep neural network dropout constructed in this paper adopts different values in different 

layers. After many tests, the following values are finally adopted: 0, 0.4, 0.3, 0.2, 0.2. 

(6) Generated NN model 

According to the above method, an ice-covering sensing model can be obtained by using the training 

data of 15# wind turbine. Figure 8 is the DNN model obtained in a training and the schematic diagram after 

export. 

 
Fig.8 Sketch map of icing detecting DNN model 

 

3.4 Ice cover model modification 

Wind turbine icing is a continuous process in time, during a period of icing period, it is impossible to 

appear unicing, that is, icing has a certain "inertia". However, the prediction results given by the prediction 

model are judged according to the SCADA monitoring data at a certain moment, and the judgments before and 

after are isolated in the time dimension. This isolated judgment is not reasonable, and if the inertia of ice can be 

properly used, the accuracy of prediction can be improved to a certain extent. Therefore, it is necessary to 

modify the prediction results of the model. 

(1) Latency Parameters 

Literature 
[9]

 points out that the concept of "delay" in inertial system can be used for reference, and the 

prediction results before and after can be linked within the delay time. As a whole, the prediction results of the 

current model at a certain moment are no longer isolated, so as to improve the rationality and effectiveness of 

the prediction. 
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(2) Latency Modification Process 

After adding the delay parameter, it is necessary to recalculate and revise all the predicted values of the 

prediction results within the delay. The modified model is shown in Figure 9 below. 

 

.
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Fig. 9 Tuned model of time delay 

(3) Effect of delay size 

It can be seen from Figure 9 that the larger the value of delay is, the more prediction results it affects 

and the more possible correction values it has. However, more correction values do not necessarily improve 

accuracy. Because the direction of the correction is not necessarily the correction to the correct result, it is also 

possible to correct the correct result to the wrong value. In reference 
[9]

, the minimum icing time is used as the 

delay size, which is reasonable. In this paper, the method of automatic calculation by model training samples 

will be adopted to select the time delay within a certain range that can make the model predict the highest rate of 

return value, and then transferto the target samples together as model parameters. 

In addition, when the icing model is applied to a practical project, the time delay represents the reaction 

time of the icing phenomenon predicted by the model. If the delay is too large, it means that the time required 

for the model to judge is about long, that is, the response of the prediction model is poor, and the real-time 

performance will be low. 

 

IV. PERFORMANCE EVALUATION 

4.1 Experimental Process 

The 15# wind turbine was selected as the training sample data to train the icing model. After that, the 

model is transferred to the 21# wind turbine to test the model transfereffect (the evaluation of the transfereffect 

will be discussed in Section 4.3). The experimental process is shown in the figure below. 
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Fig. 10 Experiment process of model 

4.2 Display method 

Vision is the first sense of human beings, and graphic display is the most acceptable way. The wind 

turbine only has two states of icing and non-icing, so the time can be the horizontal axis, the icing is the value 1, 

and the non-icing is the value 0. Drawing a simple column diagram can intuitively show the icing situation of 

the wind turbine in a certain period of time. 

Figure 11 below is a bar chart showing the actual ice covering of a wind turbine over a certain period 

of time (5000 monitoring points, approximately 11 hours). Figure 10-B is an enlarged view of Figure 10-A 

before and after freezing. 

 
A                                                B(Local amplification) 

Fig. 11 Partial magnification of column chart of blade icing 
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This simple bar chart can visually show the icing situation of the wind turbine over a period of time. If 

the real icing situation of the wind turbine is displayed at the same time as the predicted situation, important 

indexes such as prediction accuracy can be visually compared. 

Figure 12 below shows the comparison between the real icing situation of a wind turbine and the 

predicted situation of a model. 

 
Fig. 12 Comparison chart between actual data and prediction ones 

In order to compare model performance more intuitively, the above bar chart is undoubtedly a more 

appropriate way.Follow-up experimental results will be visually demonstrated and compared by this method. 

 

3.3 Evaluating indicator 

(1)accuracy 

In general classification prediction problems, the accuracy of prediction is used to measure the 

advantages and disadvantages of the model. 

 

×100%corr

sum

N
P

N


 （6） 

P:accuracy; 

corrN
:Predict the right amount; 

sumN
:summer. 

(2) Rate of return  

Accuracy is only a general measure of prediction performance, which is too simple to reflect the 

overall quality of prediction. For example, Figure 4 is the comparison between the prediction result of a certain 

model and the actual result of the 21# wind turbine. The accuracy of this prediction reached 90%, but it can be 

clearly found from Figure 4 that the prediction result is not ideal. For large quantities of data, sample 

distribution has a crucial impact on accuracy. The 21# wind turbine sample shown in Figure 4 has 94% normal 

data and only 6% icing data. This means that in extreme cases, as long as the prediction results are all normal, 

the accuracy rate will be 94%. Therefore, accuracy alone cannot reflect the quality of prediction results. To this 

end, literature 
[9]

 designed a return function to measure the quality of prediction results. 

 

_ 0 _1

_ 0 _1

50% 50%
pre pre

rew

sum sum

N N
p

N N
   

 （7） 

rewP :rate value of return; 

_ 0preN :The exact number of categorical values with 0 in the prediction result; 

_ 0sumN :The number of categories with 0 value in the sample; 

_1preN :The exact number of classification value 1 in the prediction results; 

_1sumN : The number of categories with 1 value in the sample. 
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Formula (7) is to calculate the accuracy of different categories respectively, and then classify them into 

a reported result value according to the weight. 

Obviously, the return function tries to avoid the influence of the sample classification quantity ratio on 

the prediction result, and can reflect the quality of the prediction result more than the simple accuracy. 

Therefore, in the subsequent experiments, the return function value will be used as an important indicator term. 

 

(3) miss rate 

Icing is an important type of wind turbine alarm. For alarm system, false alarm rate and false alarm rate 

are two of the most important indicators in practical work. In view of the serious impact of icing on the 

operation of the wind turbine, if the alarm is missed, it may cause serious consequences. Therefore, the 

prediction model should predict all icing alarms as far as possible. 

 

_
1 100%

pre icing

Miss

icing

N
P

N
  

 （8） 

MissP : miss rate; 

_pre icingN :Predicted ice cover times; 

icingN ：Total icing times in the sample. 

In the subsequent experiments, the missing rate will be counted。 
 

V. THE EXPERIMENTAL RESULTS 

In order to test the transferability of the model, this experiment not only compares the transferresults 

of neural network and deep neural network, but also compares the transferresults of the training model based on 

all features and the training model based on transferfeatures, as well as the transferresults after taking 

appropriate delay. In addition to the key indicators such as prediction accuracy, return value and missing rate, 

the bar chart is also used for intuitive comparison. 

 

5.1 Neural networks and deep neural networks 

Taking the 15# wind turbine data as the training data, a better model of neural network and deep neural 

network can be obtained. After that, the model is transfered to the 21# wind turbine respectively for prediction, 

calculation of main indicators, and comparison with the actual value. 

The obtained good neural network model is used to predict 15# and 21# wind turbines, and the main 

indicators are shown in Table 4 below. 

 

Table 5 Main indicators of prediction results by using NN model 

wind 

turbine 
accuracy 

Reward rate 

miss rate 
Icing accuracy 

Normal 

accuracy 
Reward rate 

15# 87.61 86.88 87.59 87.24 0 

21# 91.98 63.12 92.16 77.64 7.69 

The bar chart is used to compare the actual results of the 21# wind turbine with the predicted results of 

the transfermodel, as shown in Figure 13 below. 
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Fig. 13 Comparison chart between actual situation of 21# wind turbine and prediction results by using NN model  

 

The obtained good deep neural network model is used to predict 15# and 21# wind turbines, and the 

main indicators are shown in Table 5 below. 

 

Table 5 Main indicators of prediction results by using DNN 

wind 

turbine 
accuracy 

Reward rate 

miss rate 
Icing accuracy 

Normal 

accuracy 
Reward rate 

15# 91.33 93.50 91.19 92.34 4 

21# 90.84 65.79 92.42 79.10 0 

The bar chart is used to compare the actual results of the 21# wind turbine with the predicted results of 

the transfermodel, as shown in Figure 14 below. 

 
Fig. 14  Comparison chart between actual situation of 21# wind turbine and prediction results by using DNN model 
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5.2. Transfer characteristics 

Literature 
[9]

 points out that the features in Table 1 have a great influence on icing, and relatively good 

results can be obtained when linear logistic regression model is used for prediction. Therefore, the above 

characteristics can be transferred to obtain better experimental results. 

After the features in Table 1 are transfered, a new training model can be obtained by using deep neural 

network technology with good transferperformance. Then, the obtained model is used to predict 15# and 21# 

wind turbines respectively. The main indicators and comparison figures are shown in Table 6 and Figure 15 

below, respectively. 

 

Table 6 Main indicators of prediction results by using DNN model trained from transferred variables 

wind 

turbine 
accuracy 

Reward rate 

miss rate 
Icing accuracy 

Normal 

accuracy 
Reward rate 

15# 89.02 95.05 88.93 91.99 0 

21# 92.29 73.31 93.65 83.48 0 

By comparing the results in Table 6 and Table 5, it is found that the prediction accuracy, rate of return 

and false report rate are all improved to different degrees after the transfer feature is adopted. This indicates that 

the features given in these references 
[9]

 are not only valid and the conclusion is correct, but also can be 

transfered from one wind turbine to another wind turbine. It shows that these transferable characteristics are the 

cause or performance factors of wind turbine icing. 

 
Fig. 15 Comparison chart between actualsituation of 21# wind turbine and prediction results by using DNN model 

trained from transferred variables 

 

If the transferfeatures in Table 1 are combined with the monitoring points in SCADA, a full feature is 

constructed, a full feature model is trained again, and then transferred to the 21# wind turbine to test whether the 

experimental results will be better, which is worth discussing. 

The experimental results of full features are shown in Table 7 and Figure 15 below. 

 

Table 7 Main indicators of prediction results by using DNN model trained from all variables 

wind 

turbine 
accuracy 

Reward rate 

miss rate 
Icing accuracy 

Normal 

accuracy 
Reward rate 

15# 85.66 96.63 84.91 90.77 0 

21# 90.94 72.32 92.12 82.22 7.69 
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Fig. 16 Comparison chart between actual situation of 21# wind turbine and prediction results by using DNN model 

trained from all variables 

 

By comparing the results of Table 6 and Table 7, it can be found that the rate of return does not rise but 

falls, and there is an under-reporting phenomenon after the transfer. This shows that the more features are not 

the better when using neural networks for training; When transferring, more features are not always better. If 

the appropriate characteristic parameters can be found, a more ideal model can be obtained. This aspect 

confirms the conclusion of literature 
[9]

. 

 

5.3 Delay Function 

Reference 
[9]

 points out that since icing is an inertial process, better prediction accuracy can be obtained 

by using time delay. However, the literature does not indicate how to obtain better delay. Using the algorithms 

in Sections 3.6 and 3.7, it is possible to find a more cost-effective delay size. 

Through experiments, the time delay interval for 15# to obtain the best prediction result is 107 

monitoring points, which is about 15 minutes. 

After the delay parameter is added to adjust the prediction result, the main indicators are shown in 

Table 8 below. The comparison between the adjusted prediction result and the actual result is shown in Figure 

11 below. 

Table 8 Main indicators of prediction results by using time delay 

wind 

turbine 
accuracy 

Reward rate 

miss rate 
Icing accuracy 

Normal 

accuracy 
Reward rate 

15# 93.25 99.17 92.85 96.01 4 

21# 93.46 73.95 94.69 84.32 7.69 

Compared with the data in Table 7, after adding the delay parameter, the accuracy rate and rate of 

return are greatly improved, but the false alarm rate deteriorates to a certain extent, and some icing alarms are 

eliminated by "delay". 

 

5.4The adjusted icing model 

The above model can be further tuned to further improve the parameters on the premise of keeping the 

model transferability. 

According to the experience provided by field engineers, when the wind turbine is iced, the blade 

Angle of the wind turbine will inevitably change. In the feature variables of icing, the monitoring points related 

to leaf Angle (Pitch1_angle, PitCH2_angle, Pitch3_angle) are added to Table 1 as the new feature variable 

group, namely, the leaf Angle feature vector is added, and the method of Section 3.6 is again used to construct 
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the deep neural network prediction model. The results obtained this time are relatively ideal, and the main 

parameters are shown in Table 9 below. 

 
Fig. 17 Comparison chart between actual situation of 21# wind turbine and prediction results by using time delay 

Table 9 Main indicators of prediction results after tuning 

wind 

turbine 
accuracy 

Reward rate 

miss rate 
Icing accuracy 

Normal 

accuracy 
Reward rate 

15# 91.63 98.64 91.20 94.92 0 

21# 89.97 88.79 90.23 89.51 0 

 

Relative to the previous tables, it is not difficult to find, in addition to accuracy, the rate of return has 

been greatly improved. This means that the prediction of the normal state and the ice-covered state has been 

improved, especially the prediction accuracy of the ice-covered state has jumped forward and reached more than 

88% after the transfer. This improvement shows that when icing occurs, the ice on the blade has an obvious 

influence on blade Angle, which is consistent with the experience of field engineers. 
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Fig. 18 Comparison chart between actual situationof 21# wind turbine and prediction results by using tuned model 

 

5.5About the false alarm rate 

False alarm rate is an important index of alarm system. If false alarms occur frequently in the system, 

the system gives a warning when no alarm actually occurs, which will reduce the practical performance of the 

alarm system. However, if blindly accurate, it is likely to under-report. This is, in a way, contradictory. By 

contrast, underreporting is intolerable. 

From the comparison of the above images, it can be seen that while trying to solve the problem of 

missing alarms, false alarms always exist, and the false alarm rate is not low (it is not difficult to find this 

problem by comparing the upper and lower figures). 

In practice, in order to deal with the problem of false positives in the system, the "video linkage" 

measure can be generally adopted. When the system determines that a wind turbine has icing, the engineer in the 

central control room needs to confirm again with the help of the camera attached to the wind turbine to eliminate 

false positives. 

 

VI. CONCLUSION 

Compared with the feature vectors formed by each monitoring point in SCADA, the prediction of wind 

turbine icing is highly nonlinear. Due to the many uncertainties involved, it has been difficult to obtain high 

precision prediction. Many researchers at home and abroad basically focus on the method of model acquisition, 

and have made some progress. However, the prediction models obtained by various machine learning methods 

often have high performance for the wind turbines from the training samples, with good accuracy, rate of return 

and false report rate. However, for other wind turbines, the prediction performance is rarely mentioned or 

unclear. 

Aiming at the problem that the training model is difficult to be extended to other wind turbines, this 

paper not only describes how to train the wind turbine icing model based on deep neural network, but also 

focuses on how to build a transferable model using transfer learning technology to improve the transfer 

performance of the model. Aiming at the problem that the prediction of wind turbine icing is difficult, the 

problem of what to transferand how to transferis solved. The icing transferalgorithm based on DNN is designed 

creatively. In addition, to establish the evaluation index of the ice forecast model, points out that only by the 

traditional forecasting accuracy is not enough, can't reaction model performance, returns indicate the 

classification forecast also need to improve the quality of model prediction, need non-response rates as 

guidance, to show that forecasting model is feasible, whether has the engineering application value. Based on 

the calculation results, it can be concluded that the proposed method provides an effective method for the 

comprehensive prediction of wind turbine icing in wind farms due to the comprehensive consideration of the 

accuracy, quality and practical applicability of the prediction. 
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Next steps could include: I) considering other data, such as video images, as input to further improve 

accuracy and utility; Ii) How to reduce the false alarm rate of the model; Iii) Apply the model to the actual wind 

field to test the practicability and transfereffect of the model. 
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