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Abstract 
This paper deals with Canal surfaces, a particular kind of surfaces which have rational parametrizations. We 

base our study on the con- cept of focal sets, which is required to characterize these surfaces, and we describe 

the three most representative types of these surfaces: tubular surfaces, Dupin cyclides and surfaces of revolution. 

The main goals of the paper are to obtain new properties of this type of surfaces and to show a novel application 

of them to computer-aided design, particularly in Engineering and Architecture. 

2010 Mathematics Subject Classification: 53A05; 53B15; 05B99; 00A69 
Keywords: Canal surfaces; pipe surfaces; Dupin cyclides; computer-aided de- sign. 

--------------------------------------------------------------------------------------------------------------------------------------- 

Date of Submission: 23-02-2021                                                                            Date of acceptance: 07-03-2021 

--------------------------------------------------------------------------------------------------------------------------------------- 

 

I. INTRODUCTION 

In the last five years several papers on different types of non-usual surfaces ap- pearing in Engineering 

have been published. For instance, Burak et al. dealt in 2016 with non-null cylindrical surfaces in [14], Yariv and 

Schnitzer with superhy- drophobic surfaces of closely spaced circular bubbles in 2018 [17] and Yang et al. in 2019 

with curved surfaces in 3D [16]. According to this research we deal in this paper with another particular type of 

surfaces, the Canal surfaces. Our objective is to show that these surfaces could be used in Architecture and 
Engineering to resolve certain problems, for instance, in Mechanics Engineering to make the de- sign of simple 

pieces or assemblies (mechanisms) in which the dimensions must be precise. 

The first author who deeply studied Canal Surfaces was the French mathe- matician Gaspard Monge, 

who gave them this name due to its aspect. Later, its study was carried out by well-known geometers as Dupin 

and several physicists, like Maxwell, for instance. These surfaces generalize other well-known ones, the surfaces 

of revolution. 

In a no formal way, a Canal surface is defined as an envelope of spheres, which can be of no constant 

radius, whose centers are placed in a curve (see Figure 1.1). In any case, a precise definition of such object will 

be showed later. 

 

 

Figure 1.1: A Canal surface as an envelope of spheres 

 

One could think in principle that these surfaces have their maximum interest and treatment in 

Differential Geometry, although the reality is quite different. In- deed, its main interest lies in the field of its 

practical applications, specifically in CAGD (Computer Aided Geometric Design), where lots of studies of surface 

con- structions are carried out. These studies allow deformations (blending surfaces), reconstruction of shapes, 

transition surfaces among tubes, planning of robot move- ments, etc, (see [5, 12, 11], for instance). In many of 

these works the so-called Pipe Surfaces are considered (see Figure 1.2). These are Canal surfaces with a 
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constant radio, which have many practical applications. For example, they may represent the surface of a 

spring (ideal helix), which we can see in the real life in climbing plants, corkscrews, etc., because such images 

can be approximated by pieces of tori attached at a certain angle between their successive axes. They might 

even have pieces of circular cylinders. 

Within the Canal surfaces, we emphasize the blending surfaces. They are obtained from an initial Canal 

surface by an operation consisting of generating one or several auxiliary surfaces that create a differentiable 

transition among them, in the way that the object finally obtained is the union of all the previous surfaces in a 
simple piece. These last surfaces are called primary surfaces. Many of the objects that can be found in 

Engineering are elementary surfaces (as cylinders, cones, tori, spheres and planes), although for blending 

surfaces it is necessary to work with free-form surfaces (see [3, 9]). 

 

 
Figure 1.2: Pipe Surface 

 

The structure of the paper is as follows: After this Introduction, we show in Section 2 a historical 

evolution of CAGD (Computer Aided Geometric Design), with the objective of a better understanding of the 

proposal of the paper. In Section 3 we recall some preliminaries on Differential Geometry of curves and surfaces. 

Section 4 deals with the focal set, required to characterize Canal surfaces. The main characteristics and the 

different types of these Canal Surfaces are shown in Section 5, in which new results on them have been also 

introduced. Finally, in Section 6, some applications of Canal surfaces to CAGD are commented, partic- ularly, 

we present examples made by using the Blender program (so called for constructing a particular case of Canal 

surfaces, the blending surfaces), whose potential is enormous: in addition to modeling, it can be used to make 

special effects, develop video-games or even create animations. 

 

II. A BRIEF HISTORICAL EVOLUTION OF CAGD 

This section shows a very brief historical overview of the main developments related with curves and 

surfaces when they appeared in the field of CAGD - Com- puter Aided Geometric Design - until the middle 

1980s. 

CAGD was introduced due to the influence of different areas in the 1950s and 1960s, although it is also 

certain that interactions with different fields of science and engineering were not limited to those years. It is 

assumed that CAGD deals with the construction and representation of free-form curves, surfaces, or volumes. The 

reader can find a much more detailed and complete information of this subject in [2], from which the vast majority 

of the following historical data have been obtained. 

R. Barnhill and R. Riesenfeld were the first authors who used the term CAGD when they organized a 

conference on that subject at the University of Utah in 1974. That event, in which lot of researchers from the 

U.S.A. and Europe par- ticipated, might be considered the founding event of the field. I. Faux and M. Pratt [6] 
were the authors of the first textbook on that topic, Computational Ge- ometry for Design and Manufacture, in 

1979 (note that the meaning of that term Computational Geometry has quite changed since then. It is used to 

describe a discipline mostly dealing with discrete geometry, related with the complexity of algorithms). R. 

Barnhill and W. Boehm took advantage of it to found the journal Computer Aided Geometric Design in 1984. In 

any case, the principal text for this subject is the one by Preparata and Shamos [13]. 

After Utah, a new conference,organized by P. Bezier, who was president of the Societe des Ingenieurs de 

I’Automobile in that time was held in Paris, in 1971. 

It is convenient to recall that in AD Roman times, people already use curves in a manufacturing 

environment, with the objective of shipbuilding.This use was later perfected by the Venetians from the 13th to 

the 16th century. In that epoch, drawings to define a ship hull became popular in the 1600s in England. 

With the advent of computers, three centuries later, R. Liming, who had worked for the North American 
Aviation during World War II, published in 1944 the book Analytical Geometry with Application to Aircraft, in 
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which he combined classical drafting methods with computational techniques for the first time. It is really rec- 

ognized that computers were totally necessary for disciplines such as CAGD to emerge. One of the first 

companies to use computational techniques was General Motors, which developed its DAC-I (Design 

Augmented by Computer). It used curve and surface techniques developed by several researchers, C. de Boor 

and W. Gordon between them. Plotting, or drafting, was used to the main automotive brands of the moment, 

such as Citroen or its competitor, Renault, both located in Paris. Note that, during the early 1960s, the previously 

mentioned Pierre Bezier, who was the French engineer who introduced the so-called Bézier curves and sur- faces, 
headed the design department of the last one. 

Several branches of Mathematics, such as the differential geometry of para- metric curves, the 

approximation theory and numerical analysis were combined to become important building blocks of CAGD. 

Indeed, the US aircraft company Boeing employed them around 1950 to obtain improvements in different 

parts of the planes, as software based on Liming’s conic constructions when design- ing airplane fuselages or the 

use of spline curves for the design of wings (B- splines curves were introduced by I. Schoenberg in 1946 for the 

case of uniform knots. They are very in approximation theory). Parametric surfaces, introduced by Gauss and 

Euler, were also adopted in early CAD (computer-aided design) de- velopments, for instance, to trace a surface 

for plotting or for driving a milling tool. At the end of 1950s, these surfaces were studied and used by several 

compa- nies in Europe and the U.S., as Boeing or General Motors. 

With respect to the scientific applications of CAGD, lot of them can be men- tioned. It is well-known 
that many scientific disciplines need to model phenomena for which only a set of discrete measurements is 

available but a continuous model is also desired. 

For instance, with respect to data sites, which are typically 2D, but might also be 3D and whose 

location has no structure, was introduced a function, the scattered data interpolant, which interpolates the given 

data values and gives rea- sonable estimates in between. One approach to it was made by R. Hardy in 1971, who 

generalized the concept of splines to surfaces and R. Sibson developed a scheme, the nearest neighbor 

interpolation, which was based on the concept of Voronoi diagrams, also known as Dirichlet tessellations, a 

concept very related with Computational Geometry. Moreover, another relevant connection between CAGD and 

this last type of geometry is that of triangulation algorithms (the goal is to find a set of triangles having a given 

2D point set as vertices). C. Lawson published in 1971 the first algorithm and Green and Sibson constructed an 

algo- rithmic connection between triangulations and Voronoi diagrams. 

Although in a very summarized way, all of the above shows that CAGD needs and relies on different 
branches of Mathematics and that CAGD and Computer Graphics need each other. In the following sections of 

this work we will deal with the way in which Differential Geometry could also help in the use of these new 

techniques. 

 

III. Preliminaries 
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IV. FOCAL SETS 
The concept of focal set, which will be used throughout the paper, is required to characterize Canal surfaces. In 

this section we recall it and point out its main properties. 

Definition 4.1. A simple surface X : U −→ R3 is called a main chart if the parametric curves u ›→ X(u, v) and 

v ›→ X(u, v) are lines of curvature. 

Let M be a regular surface in R3. Let W M be a regular patch and N a differentiable unit normal N. Let κ1 and 

κ2 be the principal curvatures of M with respect to N (we suppose them ordered so that κ1  κ2 on W ). The 

reciprocals of these curvatures are said to be the principal radii of curvature of M. 

For each point q in M, let us denote by lq the line normal to M at q. Then, the surface normal N (q) is a vector 

in lq and each normal section is a plane curve C in a plane Π containing lq. Note that the center of curvature of 

C lies on lq because N (q) is perpendicular to C at q, Therefore, the centers of curvature at q fill out a 

connected subset F of lq, which is called the focal interval of M at q. The extremities of F are called the focal 

points of M at q. 
 
Note that the focal interval F reduces to a point if q is itself an umbilical point of M,, that is to say, a point in 

which both in which the two principal curvatures coincide. Otherwise, F it is a line segment, or the complement 

of a line seg- ment. Moreover, the focal points coincide if and only if q is umbilical. When the Gaussian 

curvature of M vanishes at q, then at least one focal point is at infinity. 

The next figure 4.1 shows the behavior at an elliptic and a hyperbolic point. 
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Figure 4.1: Focal interval in the vertices of an elliptic paraboloid and of an hyperbolic one 

 

 
 

V. CANAL SURFACES 
In this section we show the main properties of Canal surfaces, as well as their different types. New results on 

them are introduced and proved here. 
 

5.1 Results on Canal surfaces 
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⊂ 

 
Figure 5.1: Construction of a Canal surface M, with a line of curvature β(t) in M 

 
Canal surfaces are characterized according to (Theorem 20.12 of [7]) 

Theorem 5.2. Let M R3 be a regular surface with no umbilical points. The following assertions are equivalent 

1. M is a Canal surface. 

2. One of the systems of principal curves of M consists of circles. 

 

3. One of the components of FS(M ) is a curve. 

An immediate consequence of this result is the following 

 

 
 

5.2 Examples of Canal surfaces 

We show next three notable types of Canal surfaces. 

 

5.2.1 Tubular surfaces (colloquially tubes) 

 
 



American Journal of Engineering Research (AJER) 2021 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  
 

Page 25 

Tubes can be characterized among all Canal surfaces according to the follow- ing result 

 

Theorem 5.4. Let M be a Canal surface. The following conditions are equivalent 

1. M is a tube parametrized as in Prop. 5.3. 

2. The radius of M is constant. 

3. The radius vector of each sphere in the family defining the Canal surface 

M meets the center curve orthogonally. 

 

. 

5.2.2 Surfaces of revolution 

Surfaces of revolution are the most easily recognized class of surfaces. They are obtained as the 

result of rotating a curve α(t) = (x(t), z(t)) about the z- axis provided x(t) > 0 is assumed to assure that α 

does not cross the axis of revolution. Then, it is well-known that the standard parametrization of the surface of 

revolution obtained is X(t, θ) = (x(t) cos θ, x(t)sen θ, z(t)). 
Next, we show some results of these surfaces. For the proofs of them, see [7]. 

The vast majority of surfaces of revolution are Canal surfaces. The following result characterizes these surfaces 

in the set of Canal surfaces. 

Theorem 5.5. The center curve of a Canal surface M is a straight line if and only if M is a surface of revolution 

for which no normal line to the surface is parallel to the axis of revolution. Furthermore, the parametrization of 
a Canal surface reduces to the standard parametrization given for a surface of revolution. 

The following assert gives a close link between evolutes of plane curves and focal sets of surfaces of revolution 

Theorem 5.6. Let α(t) = (x(t), z(t)) be a plane curve that is neither a straight line nor part of a circle. Then, one 

of the components of the focal set of a surface of revolution M generated by α is the surface of revolution 

generated by the evolute of α. 
 
5.2.3 Dupin cyclides 

The cyclides were discovered by Charles Dupin (1784-1873) in 1803, when he was an undergraduate 

and was studying the works by Gaspard Monge. Dupin called cyclides to those surfaces whose curvature lines 

are all circles. Many math- ematicians have analyzed these surfaces, giving new properties of them, as for 

example Darboux or Casey. However, it was in 1868, with the works by James Maxwell, when the interest in 

the cyclides was reborn. 

 

In the first place, let us see which was the definition that Dupin gave in his book Applications de Geometrie, 

published in Paris in 1822. 

 

Definition 5.7. A cyclide is an envelope of spheres tangent to three given spheres. 

In any case, these surfaces can be also dealt with by using focal sets. To do this, we start from the previous 

definition and show that these surfaces can be seen as the envelope of spheres whose centers move along 

ellipses, hyperbolas or parabolas (as Maxwell defined them in 1868). 

 

Indeed, let us consider the envelope as in the previous definition. If we fix three spheres of this 

envelope and reapplied the definition, we obtain a second envelope. All spheres of the second envelope are 

tangent to the fixed spheres of the first one. Since the election of fixed spheres from the first envelope is arbitrary, 

all spheres of the second envelope are tangent to all spheres of the first. Both envelopes obtained are Canal 

surfaces and, furthermore, they are complements of each other in the sense that the space swept by the spheres 
of the first envelope is the outside of the space swept by the spheres of the second envelope, and vice versa. 

Thus, they share a common surface which is the definition, a cyclide. 

The curvature lines of each Canal surface form the curvature lines of the cy- clide. Hence, every 

cyclide can be thought of having a pair of Canal surfaces associated with it. By definition, the surface normals 
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of these Canal surfaces pass through two fixed curves: the curvature lines, which are circles, and the central 

curve of the Canal surface. It means that the definition given by Maxwell is ob- tained: the cyclide is a surface 

in which all its normal lines cut two fixed curves, which are ellipses, parabolas and hyperbolas. 

 
Figure 5.2: Ring cyclide 

 

Now, focal sets consisting of two curves can be characterized. As it was said before, they are the Dupin 

cyclides. A proof of this last assert can be found in [7]. 

 

Theorem 5.8. Let M be a surface for which the focal set consists of two curves. Then each curve is a conic 

section (an ellipse, hyperbola, parabola or straight line), and the planes of each component are perpendicular 

to one another. 

Starting from both the previous definition and the concept of focal sets, Dupin cyclides can be constructed. We 
show next two types of them: Elliptic-Hyperbolic and Parabolic cyclides. 
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• Parabolic cyclides 

 
Figure 5.3: Spindle cyclide and its focal set 

 

 
Figure 5.4: Horn cyclide and its focal set 
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Figure 5.5: Parabolic Cyclide 

 

VI. Some applications of Canal surfaces 
There exist lot of papers in the literature devoted to study blending surfaces, which play a relevant role 

within Canal surfaces. As it has been indicated in the Intro- duction, blending surfaces are obtained starting 

from a certain number of Canal surfaces, called primary surfaces, which generate one or more auxiliary 

surfaces which create a differentiable transition between the first ones. The final geomet- rical object obtained is 

the result of the unions of all of them in a unique piece. These transitions are operations necessary in the 

mechanical unions to make the objects differentiable. Many of the objects that we find in Engineering are el- 

ementary surfaces (cylinders, cones, spheres or planes, for instance), but in the case of blending surfaces it is 

necessary to work with free-form surfaces, that is to say, surfaces of non-elementary forms. In particular, the 

books [11] and [12] are outstanding references. 

One of the most commonly used tools for 3D modeling today is the Blender program (so called for 

constructing the aforementioned blending surfaces). Its potential is enormous: in addition to modeling, it can be 

used to make special effects, develop video-games or create animations. Indeed, in January 1995, the Dutch 
animation studio "Neo Geo" developed Blender as an in-house application according to the works by Ton 

Roosendaal. Curiously, the name Blender was taken from a song by Yello, from the album Baby). 

When Neo Geo was sold to another company, Ton Roosendaal and Frank van Beek founded "Not a 

Number Technologies" (NaN) in June 1998 with the aim of further developing Blender. Later, on July 18, 2002, 

Roosendaal started the "Free Blender" campaign, which was a crowdfunding precursor. Nowadays, Blender is a 

free software. 

Spider-Man 2 was the first professional project that used Blender to create animations for the 

storyboard department. After, Blender was also used by NASA for publicly available 3D models. 

 

Figure 6.1: The living room of a house designed with Blender: penultimate stage 
 

In Architecture, the Blender program can also be used for several applications. For instance, in the design 

of interiors of a living place. In this way, before the construction of a house we are able to imagine the final 

result and can enter all the details we want. Each figure is a Blending Surface, and it is constructed using the 

Canal surfaces. In this way, the transitions between each part of the figure are differentiable, which gives an 

effect much more similar to reality. For example, Figures 6.1 and 6.2 show the penultimate and the last stages 

of the design of the living room of a house made by authors using this application. 
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Figure 6.2: The living room of a house designed with Blender: last stage 

 

CAGD is also frequently used in Engineering. For instance, specific appli- cations of it have given rise 

to various specific design tools, in which this type of discipline is oriented to the elaboration of models restricted 

to a certain conceptual framework. Thus, CAGD applications have been developed aimed at the elabora- tion of 

models in the Aerospace, Automotive or Naval Industry. Within the latter, in this century, Computer Aided 

Graphic Design of Ships (CASGD) has gained special importance. Although in the different Teaching systems 
CAGD techniques tend to be approached in a generalist way without descending to specific applica- tions of the 

degree in which they are included, Suffo showed in [15] the adaptation of a CASGD methodology based on 

NURBS surfaces (Non-Uniform Rational B- splines) for the teaching of this type of discipline in Naval Technical 

Engineering. 

With respect to NURBS, there is recent research to solve the limitations of the NURBS standard, 

which are basically of two types. In the first place, it does not include transcendent curves and surfaces, some of 

them as common in Engi- neering as the propeller, the catenary, or the spirals. A second limitation comes 

from the fact that the maximum degree that CAD programs support is limited for efficiency reasons. 

Consequently, certain high-grade entities, such as surfaces resulting from global deformation, cannot be included 

in the NURBS standard either. Further information about the use of curves and surfaces in CAGD can b 

checked in [4, 10]. 

Finally, another use of the Blender is, as we mentioned before, the modeling for the later animation of 
a figure. In this way, we can give life to any drawing or figure. It allows us to apply Blender in various branches 

of Biology, for instance in Anatomy. 

For instance, if we wish to animate the figure of a doll playing rugby, in attack position, first, we build 

his whole body by using circumferences that will be the intersections of the spheres with the figure. One can 

also see the axes inside the body of the doll. 

In the following stage, one can see the "bones", which are the aforementioned axes, where the centers of 

the spheres are located with which the object is going to be modeled. In this way, each part of the body is a 

channel surface, and the union of one with another is a differentiable transition, which makes the object to be 

totally well defined. 
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